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MOTIVATION




MOTIVATION

m Assume we have developed a machine learning model f:

fX)=y

m X are the predictors or independent variables, e.g.
» DNA sequences, motif scores

m {/ are the predictions

> Gene expression levels (regression)
» Enhancer active/inactive (classification)

m Suppose we have a test data set (X, y). How can we evaluate
the performance of our model f?
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BENCHMARKING REGRESSORS

m Residual sum of squares

n

S Wi - fO))?

i=1
Depends on the variance of y

m Coefficient of determination

SO Siavi—f(x))? _ residual sum of squares

S (Vi — V)2 total sum of squares

my =237 y;,the mean, can be interpreted as a reference or
baseline regressor

m R? compares the predictions of f to the baseline



BENCHMARKING CLASSIFIERS
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True positive (TP):4  True negative (TN): 5

False positive (FP): 1 False negative (FN): 2



BENCHMARKING CLASSIFIERS

m We discuss here binary classification problems, i.e. data with
two classes

m We have several options for multiclass problems:
» one class vs. all other classes

» one class vs. another class
» use multi-class losses such as cross-entropy




BENCHMARKING CLASSIFIERS

m We discuss here binary classification problems, i.e. data with
two classes

m We have several options for multiclass problems:
» one class vs. all other classes
» one class vs. another class
» use multi-class losses such as cross-entropy
m Classifiers typically return a score, or better, a probability:
f(x) = P(positive class|x) >t =y =1

m tis a threshold that we can vary

m If the model f is a simple linear function, then t determines
the y-intercept



BENCHMARKING CLASSIFIERS

m True positive rate:

Positive Negative PR~ &£ _ TP
(P) (N) P TP + FN
also called: sensitivity or recall
I S oo (How well are positives
//’ ““i’fffr recognized)
4 \
I
\ TP FP ',' m False positive rate:
S o FP FP
PR = =N
FN TN

(How well are negatives
recognized)




BENCHMARKING CLASSIFIERS: ROC-CURVES
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BENCHMARKING CLASSIFIERS: ROC-CURVES
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BENCHMARKING CLASSIFIERS: ROC-CURVES
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BENCHMARKING CLASSIFIERS: ROC-CURVES
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BENCHMARKING CLASSIFIERS: ROC-CURVES
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BENCHMARKING CLASSIFIERS: ROC-CURVES
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BENCHMARKING CLASSIFIERS

m In practice we often deal with imbalanced data sets, i.e.
PN

m Example: Genome wide identification of enhancers
m Remark: If N < P then we flip labels!

m With ROC curves we never compare P and N:

TPRﬁ_TP__ TP FPRf_FP__ FP
P  TP+FN’ N FP+TN

m Positive predictive value (PPV, or precision):

TP
~ TP+ FP

PPV



BENCHMARKING CLASSIFIERS: PR-CURVES
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BENCHMARKING CLASSIFIERS: PR-CURVES

TP
TP+FP

PPV

obvious cases incorrect

_TP
TPR = Tp1FN




BENCHMARKING CLASSIFIERS: PR-CURVES

TP
TP+FP

PPV

Y

~
f(x) >~

.. X(l)



BENCHMARKING CLASSIFIERS: PR-CURVES
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BENCHMARKING CLASSIFIERS: PR-CURVES
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BENCHMARKING CLASSIFIERS: PR-CURVES
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BENCHMARKING CLASSIFIERS: ROC/PR-AUC
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BENCHMARKING CLASSIFIERS: CLASSICAL STATISTICS

m Probability of a type | error:

a=P(f(x)=1]y =0)
_ _FP
~ FP +TN

m Probability of a type Il error:

B=P(f(x)=0|y=1)
_ FN
~ TP +FN

m Power of a statistical test:

7=PEX) =1ly=1)
=1-—p



BENCHMARKING CLASSIFIERS: ADVANCED MEASURES

m All measures so far were likelihood based, which ignore
prevalences

m There are also posterior or "Bayesian" measures

m False discovery rate (FDR):

T
=117 =0) = 20—
m False omission rate (FOR):
B

Py = 01f() = 1) =

(1 — OL)TFO aF /871'1
m Where: 7o = N/(P+ N) and m; = P/(P + N)

m Both the FDR and FOR require an estimate of prevalences



READING

m Section 5.7.2 [Murphy, 2012]
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