MACHINE LEARNING IN BIOINFORMATICS Model Benchmarking

Philipp Benner philipp.benner@bam.de

VP.1 - eScience Federal Institute of Materials Research and Testing (BAM)

April 25, 2024

MOTIVATION

Assume we have developed a machine learning model *f*:

$$f(X) = \hat{y}$$

■ *X* are the predictors or independent variables, e.g.

DNA sequences, motif scores

- \hat{y} are the predictions
 - Gene expression levels (regression)
 - Enhancer active/inactive (classification)
- Suppose we have a test data set (*X*, *y*). How can we evaluate the performance of our model *f*?

MODEL BENCHMARKING

BENCHMARKING REGRESSORS

Residual sum of squares

$$\sum_{i=1}^n (y_i - f(x_i))^2$$

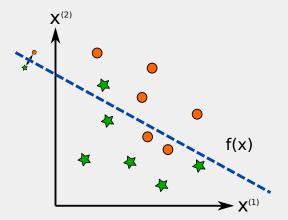
Depends on the variance of y

Coefficient of determination

$$R^2 = 1 - \frac{\sum_{i=1}^n (y_i - f(x_i))^2}{\sum_{i=1}^n (y_i - \bar{y})^2} = 1 - \frac{\text{residual sum of squares}}{\text{total sum of squares}}$$

■ $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$, the mean, can be interpreted as a reference or baseline regressor

 \blacksquare R^2 compares the predictions of f to the baseline



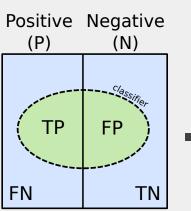
True positive (TP): 4True negative (TN): 5False positive (FP): 1False negative (FN): 2

- We discuss here binary classification problems, i.e. data with two classes
- We have several options for multiclass problems:
 - one class vs. all other classes
 - one class vs. another class
 - use multi-class losses such as cross-entropy

- We discuss here binary classification problems, i.e. data with two classes
- We have several options for multiclass problems:
 - one class vs. all other classes
 - one class vs. another class
 - use multi-class losses such as cross-entropy
- Classifiers typically return a score, or better, a probability:

 $f(x) = P(\text{positive class} | x) > t \quad \Rightarrow \hat{y} = 1$

- *t* is a threshold that we can vary
- If the model f is a simple linear function, then t determines the y-intercept



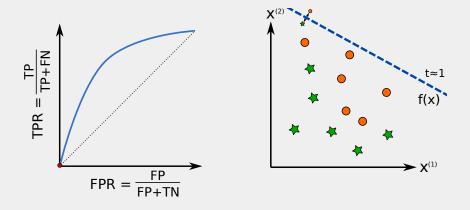
$$TPR = \frac{TP}{P} = \frac{TP}{TP + FN}$$

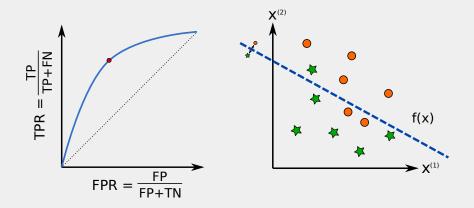
also called: sensitivity or recall (How well are positives recognized)

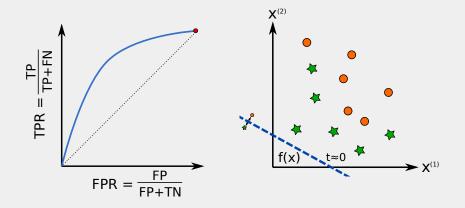
False positive rate:

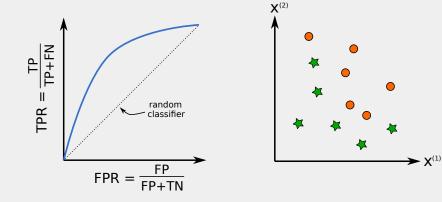
$$FPR = \frac{FP}{N} = \frac{FP}{FP + TN}$$

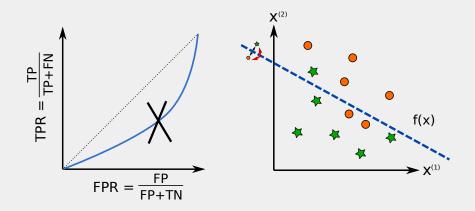
(How well are negatives recognized)

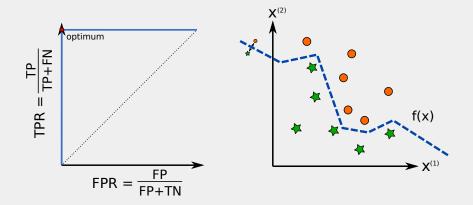










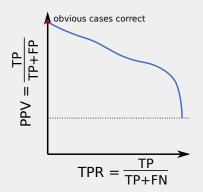


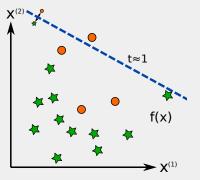
- In practice we often deal with imbalanced data sets, i.e. $P \ll N$
- Example: Genome wide identification of enhancers
- **Remark:** If $N \ll P$ then we flip labels!
- With ROC curves we never compare P and N:

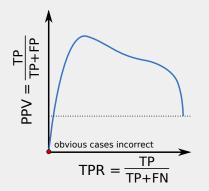
$$\mathrm{TPR} = \frac{\mathrm{TP}}{\mathrm{P}} = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}} \,, \quad \mathrm{FPR} = \frac{\mathrm{FP}}{\mathrm{N}} = \frac{\mathrm{FP}}{\mathrm{FP} + \mathrm{TN}}$$

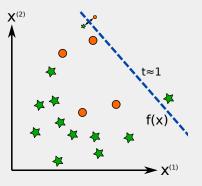
Positive predictive value (PPV, or precision):

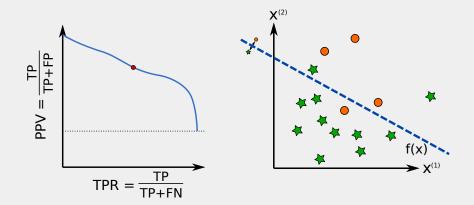
$$\mathrm{PPV} = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$$

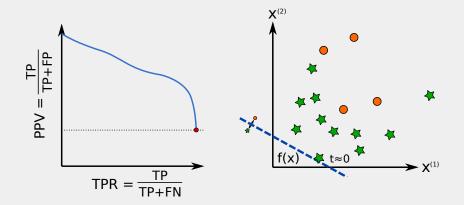


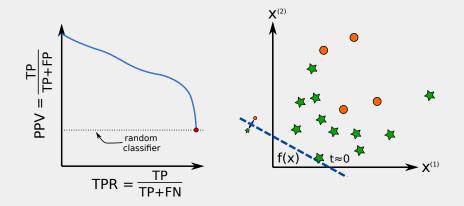


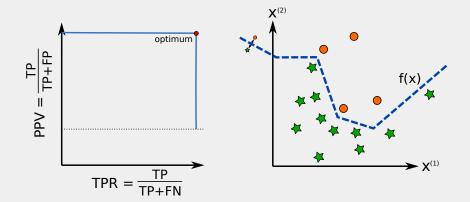




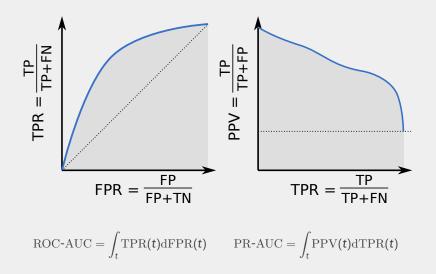








BENCHMARKING CLASSIFIERS: ROC/PR-AUC



BENCHMARKING CLASSIFIERS: CLASSICAL STATISTICS

Probability of a type I error:

$$\alpha = P(f(x) = 1 | y = 0)$$
$$\approx \frac{\text{FP}}{\text{FP} + \text{TN}}$$

Probability of a type II error:

$$eta = P(f(x) = 0 | y = 1)$$

 $pprox rac{\mathrm{FN}}{\mathrm{TP} + \mathrm{FN}}$

Power of a statistical test:

$$\gamma = P(f(x) = 1 | y = 1)$$
$$= 1 - \beta$$

BENCHMARKING CLASSIFIERS: ADVANCED MEASURES

- All measures so far were likelihood based, which ignore prevalences
- There are also posterior or "Bayesian" measures
- False discovery rate (FDR):

$$P(y = 1 | f(x) = 0) = \frac{\alpha \pi_0}{\alpha \pi_0 + \gamma \pi_1}$$

■ False omission rate (FOR):

$$P(y = 0 | f(x) = 1) = \frac{\beta \pi_1}{(1 - \alpha)\pi_0 + \beta \pi_1}$$

- Where: $\pi_0 = N/(P + N)$ and $\pi_1 = P/(P + N)$
- Both the FDR and FOR require an estimate of prevalences

11

Section 5.7.2 [Murphy, 2012]

REFERENCES

MURPHY, K. P. (2012). **MACHINE LEARNING: A PROBABILISTIC PERSPECTIVE.** MIT press.