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Introduction to
Probability Theory



Roulette Wheel
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Roulette Wheel

Assume we have a fair roulette wheel with 37 segments, of which
18 are black
18 are red
1 is green and labeled with a zero

The red and black segments are labeled with numbers ranging
from 1 to 36, where

even odd
red 8 10
black 10 8

2 45



Roulette Wheel - Simple probabilities

What is the probability of black?

pr(black) = #black segments
#segments =

18
37

What is the probability of black or green?

pr(black or green) = #black and green segments
#segments

=
#black segments

#segments +
#green segments

#segments
= pr(black) + pr(green)

This property is called additivity
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Roulette Wheel - Simple probabilities

What is the probability of observing first black and
afterwards red?

pr(first black and then red) = pr(black)pr(red)

and ⇒ "multiplication"
or ⇒ "addition"
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Roulette Wheel - Simple probabilities

What is the probability of a black segment with an even
number?

pr(black and even number)
= pr(black)pr(even number)

=
#black segments

#segments
#even segments

#segments

Wrong!
Both events are not independent! Some black segments are
even.
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Formal definitions

Sample space
The set of all possible outcomes is called sample space and
typically denoted Ω. The elements of the sample space are called
outcomes or samples

For our roulette wheel, if we only care about the color of
segments, then the sample space is

Ω = {red,black, green}

If we consider both colors and numbers, then

Ω = {0 : green, 1 : red, 2 : black, . . . }

Colors and numbers are not independent:

Ω ̸= {red,black, green} × {0, 1, 2, . . . , 36}
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Formal definitions

Events
An event E is any subset of Ω, denoted E ⊆ Ω

We assign probabilities to events E ⊆ Ω

The probability of "black or green" is denoted

pr({black, green})

More formally, we may write pr(E) for some E ⊆ Ω
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Probability Axioms – Axiom I

What is the lowest possible probability?

Assume that

Ω = {yellow, red,black, green}

then pr({yellow}) = 0, since there is no yellow segment

We could also write pr(∅) = 0

First probability axiom:

pr(E) ≥ 0 for all E ⊆ Ω
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Probability Axioms – Axiom II

What is the largest possible probability?

Assume that
Ω = {red,black, green}

then pr({red,black, green}) = 1

Second probability axiom:

pr(Ω) = 1
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Probability Axioms – Axiom III

The third axiom covers the additivity of independent events

pr(E1 ∪ E2 ∪ · · · ∪ En) =
n∑
i

pr(Ei)

if all Ei are independent

Independence is not given if for example

E1 = {black, green} , E2 = {red, green} .

In this case we have

pr(E1 ∪ E2) ̸= pr(E1) + pr(E2) > 1
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Formal definitions

Probability distribution (discrete case)
A probability distribution pr : P(Ω) → [0, 1] is a function that
assigns a probability to each element of the powerset of Ω. In
addition, it fulfills the probability axioms I-III, i.e.

pr(E) ≥ 0 for all E ⊆ Ω

pr(Ω) = 1

pr(E1 ∪ E2 ∪ · · · ∪ En) =
∑n

i pr(Ei)
where E1, E2, . . . , En are pairwise independent events.

11 45



Complement and sum rule

There are several consequences of the probability axioms,
one is the complement rule

pr(Ec) = pr(Ω)− pr(E) = 1 − pr(E)

For example, the probability of not observing black is given
by

pr({black}c) = 1 − pr({black})

Another important consequence is the addition law or sum
rule, given by

pr(A ∪ B) = pr(A) + pr(B)− pr(A ∩ B)

where pr(A ∩ B) = 0 if A and B are independent
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Random Variables

Random variables (RVs) add another layer of formalism –
Why do we need them?

Assume we consider a more complex random experiment,
i.e. we observe the roulette game for n rounds

What is the probability of observing black in the ith round?

To formalize this notion, we would associate a random
variable Xi with the ith round and write

pr(Xi = {black})

Similarly, we write

pr(Xi = {black}, Xj = {green})

for observing black in the ith round and green in the j round
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Random Variables

There exist two types of roulette wheels:

▶ 1 green segment and 37 in total (what we considered)

▶ 2 green segments and 38 in total

Let X1 correspond to the first type and X2 the second

We see that

pr(X1 = {black}) ̸= pr(X2 = {black})

Random variables correspond to different types of
distributions (probability assigments)
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Random Variables – Formal definition

Random Variable (RV)
A random variable X : Ω → R is a mapping from the sample space
Ω to a measurable space, typically the real numbers R. We
denote by {X = x} the event that X takes the value x and with
X ∼ D that X has distribution D.

Our previous notation, e.g. X1 = {black}, is not correct

We stick to this notation for simplicity

If possible we avoid random variables, to simplify notation,
i.e. we write

pr({black}) = pr(X1 = {black})

if unambiguous
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Conditional probabilities

A conditional probability is the probability of an event given
that another event has happened or is known

Assume we know that the ball has landed on a red segment.
What is the probability that the segment has an even
number?

This is a conditional probability denoted as

pr({even} |{red}) = ?
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Conditional probabilities - Derivation

Consider the following ingredients:

▶ pr({even} |{red}): The probability of an even segment, given
that the ball has landed on a red segment

▶ pr({red}): The probability that we observe red

What is the probability of red and of an even segment, given
that the ball has landed on a red segment?

pr({red})pr({even} |{red})

Logically, this is equivalent to asking: What is the probability
of observing a red segment with an even number

pr({red})pr({even} |{red}) = pr({even and red})
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Conditional probabilities - Derivation

Let A denote the set of all red segments

Let B denote the set of all even segments

The set of red segments with an even number is A ∩ B

Hence, we can rewrite
pr({red})pr({even} |{red}) = pr({even and red})

as follows:
pr(A)pr(B |A) = pr(A ∩ (Ac ∪ B))

= pr(A ∩ B)
Note that this is equivalent to logic calculus:

A ∧ (A→ B) = A ∧ (¬A ∨ B)
= A ∧ B
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Conditional probabilities and Bayes theorem

Conditional probability and Bayes theorem
The conditional probability of A given B is defined through

pr(A |B)pr(B) = pr(A ∩ B) = pr(B |A)pr(A)

If pr(B) > 0 it follows that

pr(A |B) = pr(A ∩ B)
pr(B) =

pr(B |A)pr(A)
pr(B)

This is called Bayes theorem, where we call
pr(A |B) : the posterior
pr(B |A) : the likelihood
pr(A) : the prior probability
pr(B) : the evindence or marginal likelihood

19 45



Independent events

Independence
Two events A and B are called independent, if

pr(A ∩ B) = pr(A |B)pr(B) = pr(A)pr(B) .

We also denote independence as A ⊥⊥ B.

Example:

▶ We observe two rounds of roulette, associated with random
variables X1, and X2

▶ The probability of observing first black and then red is
pr(X1 ={black}, X2 = {red})

= pr(X2 = {red} | X1 = {black})pr(X1 = {black})
= pr(X2 = {red})pr(X1 = {black})
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The Gambler’s Fallacy

The Gambler’s Fallacy [Hacking, 2001]
Consider our roulette game. The Fallacious Gambler reasons as
follows:

The roulette wheel is fair
I have just observed 12 black spins in a row
Since the wheel is fair, black and red come up equally often
Hence, red has to come up pretty soon, I’d better start
betting red

The gambler thinks that a sequence of twelve blacks makes it
more likely that the wheel will step at red next time. If so, a past
sequence affects future outcomes and the wheel is not fair. So
trials would not be independent and the gambler’s premises are
inconsistent.
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Law of total probability

Law of total probability
Let B1,B2, . . . ,Bn denote n mutually independent and exhaustive
events, then

pr(A) =
n∑
i=1

pr(A ∩ Bi) =
n∑
i=1

pr(A |Bi)pr(Bi)

Example:

pr({black}) = pr({black and even}) + pr({black and odd})

The set of even and odd segments does not overlap
(independence) and covers the full sample space
(exhaustive)
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Examples



Inductive logic and learning from past events

Inductive logic [Hacking, 2001]
Inductive logic is about risky arguments. It analyses inductive
arguments using probability. A risky argument can be a very
good one, and yet its conclusion can be false.

Probability assignments reflect beliefs about events

They may come from simple distributions or complex
models, such as neural networks

Bayes theorem is used to derive probabilistic if-statements:

▶ If B has happened, what is the probability of A?
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Medical testing

Medical testing
After your yearly checkup, the doctor has bad news and good
news. The bad news is that you tested positive for a serious
disease, and that the test is 99% accurate (i.e., the probability of
testing positive given that you have the disease is 0.99, as is the
probability of testing negative given that you don’t have the
disease). The good news is that this is a rare disease, striking
only one in 10,000 people. What are the chances that you
actually have the disease?
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Medical testing

Let I denote a random variable indicating infection, i.e.
I = true if you are infected

Let T denote a random variable associated with the test
result, i.e. T = true if the test is positive

We know that:

▶ pr(I = true ) = 1/10,000

▶ pr(T = true | I = true ) = 0.99

▶ pr(T = false| I = false) = 0.99
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Medical testing

pr(I = true | T = true)

=
pr(T = true | I = true)pr(I = true)∑

i pr(T = true | I = i)pr(I = i)

=
0.99 · 1/10,000

0.99 · 1/10,000 + (1 − 0.99) · (1 − 1/10,000)

=
0.000099

0.000099 + 0.009999

≈ 0.0098

Hence, the chance of actually having the disease is less than 1%.
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The Monty Hall problem

The Monty Hall problem
On a game show, a contestant is told the rules as follows: There
are three doors, labeled 1, 2, 3. A single prize has been hidden
behind one of them with equal probability. You get to select one
door. Initially your chosen door will not be opened. Instead, the
gameshow host will open one of the other two doors, and he will
do so in such a way as not to reveal the prize. For example, if you
first choose door 1, he will then open one of doors 2 and 3, and it
is guaranteed that he will choose which one to open so that the
prize will not be revealed. At this point, you will be given a fresh
choice of door: you can either stick with your first choice, or you
can switch to the other closed door. All the doors will then be
opened, and you will receive whatever is behind your final choice
of door.
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The Monty Hall problem

The Monty Hall problem
Imagine that the contestant chooses door 1 first; then the
gameshow host opens door 3, revealing nothing behind the door,
as promised. Should the contestant

stick with door 1,
switch to door 2,
does it make a difference?
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The Monty Hall problem

Let P ∈ {1, 2, 3} denote a random variable associated with
the location of the price

Let D ∈ {1, 2, 3} denote the door that has been opened by
the gameshow host

A priori we have
pr(P = i) = 1/3

We are interested in the posterior probability

pr(P = i |D = 3) = pr(D = 3 |P = i)pr(P = i)
pr(D = 3)
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The Monty Hall problem

The case i = 1

pr(P = 1 |D = 3) = pr(D = 3 |P = 1)pr(P = 1)∑
i pr(D = 3 |P = i)pr(P = i)

=
1/2 · 1/3

1/2 · 1/3 + 1 · 1/3 + 0 · 1/3
= 1/3

The case i = 2

pr(P = 2 |D = 3) = pr(D = 3 |P = 2)pr(P = 2)∑
i pr(D = 3 |P = i)pr(P = i)

=
1 · 1/3

1/2 · 1/3 + 1 · 1/3 + 0 · 1/3
= 2/3
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The Monty Hall problem

The case i = 3

pr(P = 1 |D = 3) = pr(D = 3 |P = 1)pr(P = 1)∑
i pr(D = 3 |P = i)pr(P = i)

=
0 · 1/3

1/2 · 1/3 + 1 · 1/3 + 0 · 1/3
= 0

Hence, we have the posterior distribution

pr(P = i |D = 3) = (1/3, 2/3,0)

Switching the door increases the probability of getting the
price
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Probability Distributions



Bernoulli distribution

Bernoulli distribution
Let X be a random variable taking values in {0, 1}. If X follows a
Bernoulli distribution with parameter p, i.e.

X ∼ Bernoulli(p)

then
pr(X = 1) = p .

Flipping a coin once can be modeled using a Bernoulli
distribution

The coin is fair if p = 1/2
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Categorical distribution

Categorical or multinoulli distribution
Let X be a random variable taking values in {0, 1, . . . , k} for any
integer k > 0. If X follows a categorical distribution with
parameters p = (p1, . . . ,pk) such that

∑
i pi = 1, i.e.

X ∼ Categorical(p)

then
pr(X = i) = pi .

The categorical distribution is the extension of the Bernoulli
distribution to k outcomes
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Geometric distribution

Geometric distribution
Let X be a random variable taking values in {1, 2, 3, . . . }. If X
follows a geometric distribution with parameter p ∈ [0, 1], i.e.

X ∼ Geometric(p)

then
pr(X = k) = (1 − p)k−1p .

The probability distribution of the number X of Bernoulli
trials needed to get one success

It gives the probability that the first occurrence of success
requires k independent trials, each with success probability
p.
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Normal distribution

Normal or Gaussian distribution
Let X be a random variable taking values in R. If X follows a
normal distribution with parameters µ ∈ R and σ > 0, i.e.

X ∼ Normal(µ, σ)

then
pr(X ∈ A) =

∫
A
fµ,σ(x)dx ,

where fµ,σ is the normal density function

fµ,σ(x) =
1√

2πσ2
exp

(
−(x − µ)2

2σ2

)
.
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Normal distribution

The probability distribution of continuous random variables
is usually defined through density functions

For continuous distributions we have pr(X = x) = 0 for all
x ∈ R, i.e. the probability that a single real value is observed
is always zero
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Parameter estimation



Parameter estimation

Assume we observed n realisations x = (x1, . . . , xn) from a
known distribution with unknown parameters θ

How can we estimate the values of θ?

Bayes theorem

pr(θ | x) = pr(x | θ)pr(θ)
pr(x)

We take the value with highest probability, i.e.

θ̂ = argmax
θ

pr(θ | x)

this is called the maximum a-posteriori (MAP) estimate
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Parameter estimation I

Constants can be dropped when computing the MAP, i.e.

θ̂ = argmax
θ

pr(θ | x)

= argmax
θ

pr(x | θ)pr(θ)
pr(x)

= argmax
θ

pr(x | θ)pr(θ)

= argmax
θ

[log pr(x | θ) + log pr(θ)]

since pr(x) does not depend on θ. We can apply the
logarithm, because it is a monotonic (order preserving)
function, which does not change the position of the
maximum
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Parameter estimation II

If we assume that we have no prior information on θ, i.e.
pr(θ) is uniform (constant), then we obtain the maximum
likelihood (ML) estimate

θ̂ = argmax
θ

pr(x | θ)
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Parameter estimation – Continuous variables

For continuous variables we know that

pr(x | θ) = 0

and therefore also pr(x) is zero, which causes the posterior
distribution to be undefined

There exists a Bayes theorem for densities

f (θ | x) = f (x | θ)f (θ)
f (x)

Hence, the MAP for continuous variables is simply

θ̂ = argmax
θ

f (x | θ)f (θ)

= argmax
θ

[log f (x | θ) + log f (θ)]
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Normal distribution

Assume we observed n realisations x = (x1, . . . , xn) from
X ∼ Normal(µ, σ) with unknown µ and σ

Furthermore, let’s assume we have no prior information
about µ and σ, i.e. the prior probability pr(µ, σ) is uniform

We derive the ML estimate

µ̂, σ̂ = argmax
µ,σ

fµ,σ(x)

= argmax
µ,σ

n∏
i=1

fµ,σ(xi)

= argmax
µ,σ

n∑
i=1

log fµ,σ(xi)
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Normal distribution

We derive the ML estimate

µ̂, σ̂ = argmax
µ,σ

n∑
i=1

log fµ,σ(xi)

= argmax
µ,σ

+ log

(
1√

2πσ2

)n
− 1

2σ2

n∑
i=1

(xi − µ)2

= argmax
µ,σ

−n2 log
(
σ2)− 1

2σ2

n∑
i=1

(xi − µ)2
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Normal distribution

We derive the ML estimate of µ

∂

∂µ

[
−n2 log

(
σ2)− 1

2σ2

n∑
i=1

(xi − µ)2

]
= 0

⇒ − ∂

∂µ

1
2σ2

n∑
i=1

(xi − µ)2 = 0

⇒ ∂

∂µ

n∑
i=1

(xi − µ)2 = 0

⇒
n∑
i=1

−2(xi − µ) = 0

⇒ µ =
1
n

n∑
i=1

xi
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Normal distribution

We derive the ML estimate of σ2

∂

∂σ2

[
−n2 log

(
σ2)− 1

2σ2

n∑
i=1

(xi − µ)2

]
= 0

⇒ −n2
1
σ2 +

1
2σ4

n∑
i=1

(xi − µ)2 = 0

⇒ 1
2σ2

[
−n+

1
σ2

n∑
i=1

(xi − µ)2

]
= 0

⇒ 1
σ2

n∑
i=1

(xi − µ)2 = n

⇒ σ2 =
1
n

n∑
i=1

(xi − µ)2
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Reading

[Hacking, 2001]
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