Machine Learning in Bioinformatics

PROBABILITY BASICS

Philipp Benner
philipp.benner@bam.de
VP. 1 - eScience
Federal Institute of Materials Research and Testing (BAM)

April 25, 2024

INTRODUCTION TO PROBABILITY THEORY

Roulette Wheel

Roulette Wheel

Assume we have a fair roulette wheel with 37 segments, of which
■ 18 are black
■ 18 are red

- 1 is green and labeled with a zero

The red and black segments are labeled with numbers ranging from 1 to 36 , where

	even	odd
red	8	10
black	10	8

Roulette Wheel - Simple probabilities

■ What is the probability of black?

$$
\operatorname{pr}(\text { black })=\frac{\# \text { black segments }}{\# \text { segments }}=\frac{18}{37}
$$

Roulette Wheel - Simple probabilities

- What is the probability of black?

$$
\operatorname{pr}(\text { black })=\frac{\# \text { black segments }}{\# \text { segments }}=\frac{18}{37}
$$

■ What is the probability of black or green?
$\operatorname{pr}($ black or green $)=\frac{\# \text { black and green segments }}{\# \text { segments }}$

$$
\begin{aligned}
& =\frac{\# \text { black segments }}{\# \text { segments }}+\frac{\# \text { green segments }}{\# \text { segments }} \\
& =\operatorname{pr}(\text { black })+\operatorname{pr}(\text { green })
\end{aligned}
$$

This property is called additivity

Roulette Wheel - Simple probabilities

■ What is the probability of observing first black and afterwards red?

$$
\operatorname{pr}(\text { first black and then red })=\operatorname{pr}(\text { black }) \operatorname{pr}(\text { red })
$$

Roulette Wheel - Simple probabilities

■ What is the probability of observing first black and afterwards red?

$$
\operatorname{pr}(\text { first black and then red })=\operatorname{pr}(\text { black }) \operatorname{pr}(\text { red })
$$

■ and \Rightarrow "multiplication"
■ or \Rightarrow "addition"

Roulette Wheel - Simple probabilities

■ What is the probability of a black segment with an even number?
pr(black and even number)

$$
\begin{aligned}
& =\mathrm{pr}(\text { black }) \operatorname{pr}(\text { even number }) \\
& =\frac{\# \text { black segments }}{\# \text { segments }} \frac{\# \text { even segments }}{\# \text { segments }}
\end{aligned}
$$

Roulette Wheel - Simple probabilities

- What is the probability of a black segment with an even number?
pr(black and even number)

$$
\begin{aligned}
& =\mathrm{pr}(\text { black }) \text { pr }(\text { even number }) \\
& =\frac{\# \text { black segments }}{\# \text { segments }} \frac{\# \text { even segments }}{\# \text { segments }}
\end{aligned}
$$

Wrong!
■ Both events are not independent! Some black segments are even.

FORMAL DEFINITIONS

Sample space

The set of all possible outcomes is called sample space and typically denoted Ω. The elements of the sample space are called outcomes or samples

■ For our roulette wheel, if we only care about the color of segments, then the sample space is

$$
\Omega=\{\text { red, black, green }\}
$$

- If we consider both colors and numbers, then

$$
\Omega=\{0 \text { : green, } 1 \text { : red, } 2 \text { : black, } \ldots\}
$$

- Colors and numbers are not independent:

$$
\Omega \neq\{\text { red, black, green }\} \times\{0,1,2, \ldots, 36\}
$$

FORMAL DEFINITIONS

Events

An event E is any subset of Ω, denoted $E \subseteq \Omega$
■ We assign probabilities to events $E \subseteq \Omega$
■ The probability of "black or green" is denoted $\operatorname{pr}(\{$ black, green $\})$

■ More formally, we may write $\operatorname{pr}(E)$ for some $E \subseteq \Omega$

Probability Axioms - Axiom I

- What is the lowest possible probability?

■ Assume that

$$
\Omega=\{\text { yellow, red, black, green }\}
$$

then $\operatorname{pr}(\{$ yellow $\})=0$, since there is no yellow segment
■ We could also write $\operatorname{pr}(\varnothing)=0$
■ First probability axiom:

$$
\operatorname{pr}(E) \geq 0 \quad \text { for all } E \subseteq \Omega
$$

Probability Axioms - Axiom II

- What is the largest possible probability?
- Assume that

$$
\Omega=\{\text { red, black, green }\}
$$

then $\operatorname{pr}(\{$ red, black, green $\})=1$

- Second probability axiom:

$$
\operatorname{pr}(\Omega)=1
$$

Probability Axioms - Axiom III

■ The third axiom covers the additivity of independent events

$$
\operatorname{pr}\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right)=\sum_{i}^{n} \operatorname{pr}\left(E_{i}\right)
$$

if all E_{i} are independent
■ Independence is not given if for example

$$
E_{1}=\{\text { black, green }\}, E_{2}=\{\text { red }, \text { green }\} .
$$

■ In this case we have

$$
\operatorname{pr}\left(E_{1} \cup E_{2}\right) \neq \operatorname{pr}\left(E_{1}\right)+\operatorname{pr}\left(E_{2}\right)>1
$$

FORMAL DEFINITIONS

Probability distribution (discrete case)

A probability distribution pr : $\mathbb{P}(\Omega) \rightarrow[0,1]$ is a function that assigns a probability to each element of the powerset of Ω. In addition, it fulfills the probability axioms I-III, i.e.

■ $\operatorname{pr}(E) \geq 0 \quad$ for all $E \subseteq \Omega$

- $\operatorname{pr}(\Omega)=1$

■ $\operatorname{pr}\left(E_{1} \cup E_{2} \cup \cdots \cup E_{n}\right)=\sum_{i}^{n} \operatorname{pr}\left(E_{i}\right)$
where $E_{1}, E_{2}, \ldots, E_{n}$ are pairwise independent events.

COMPLEMENT AND SUM RULE

- There are several consequences of the probability axioms, one is the complement rule

$$
\operatorname{pr}\left(E^{C}\right)=\operatorname{pr}(\Omega)-\operatorname{pr}(E)=1-\operatorname{pr}(E)
$$

- For example, the probability of not observing black is given by

$$
\operatorname{pr}\left(\{\text { black }\}^{c}\right)=1-\operatorname{pr}(\{\text { black }\})
$$

- Another important consequence is the addition law or sum rule, given by

$$
\operatorname{pr}(A \cup B)=\operatorname{pr}(A)+\operatorname{pr}(B)-\operatorname{pr}(A \cap B)
$$

where $\operatorname{pr}(A \cap B)=0$ if A and B are independent

Random Variables

■ Random variables (RVs) add another layer of formalism Why do we need them?

■ Assume we consider a more complex random experiment, i.e. we observe the roulette game for n rounds

■ What is the probability of observing black in the ith round?
■ To formalize this notion, we would associate a random variable X_{i} with the ith round and write

$$
\operatorname{pr}\left(X_{i}=\{\text { black }\}\right)
$$

- Similarly, we write

$$
\operatorname{pr}\left(X_{i}=\{\text { black }\}, X_{j}=\{\text { green }\}\right)
$$

for observing black in the ith round and green in the j round

Random Variables

■ There exist two types of roulette wheels:

- 1 green segment and 37 in total (what we considered)
- 2 green segments and 38 in total

■ Let X_{1} correspond to the first type and X_{2} the second

- We see that

$$
\operatorname{pr}\left(X_{1}=\{\text { black }\}\right) \neq \operatorname{pr}\left(X_{2}=\{\text { black }\}\right)
$$

■ Random variables correspond to different types of distributions (probability assigments)

Random Variables - Formal definition

Random Variable (RV)

A random variable $X: \Omega \rightarrow \mathbb{R}$ is a mapping from the sample space Ω to a measurable space, typically the real numbers \mathbb{R}. We denote by $\{X=x\}$ the event that X takes the value x and with $X \sim D$ that X has distribution D.

■ Our previous notation, e.g. $X_{1}=\{$ black $\}$, is not correct
■ We stick to this notation for simplicity

- If possible we avoid random variables, to simplify notation, i.e. we write

$$
\operatorname{pr}(\{\text { black }\})=\operatorname{pr}\left(X_{1}=\{\text { black }\}\right)
$$

if unambiguous

CONDITIONAL PROBABILITIES

■ A conditional probability is the probability of an event given that another event has happened or is known

■ Assume we know that the ball has landed on a red segment. What is the probability that the segment has an even number?

- This is a conditional probability denoted as

$$
\operatorname{pr}(\{\text { even }\} \mid\{\text { red }\})=?
$$

CONDITIONAL PROBABILITIES - DERIVATION

■ Consider the following ingredients:

- $\operatorname{pr}(\{$ even $\} \mid\{r e d\})$: The probability of an even segment, given that the ball has landed on a red segment
- $\operatorname{pr}(\{r e d\})$: The probability that we observe red
- What is the probability of red and of an even segment, given that the ball has landed on a red segment?

$$
\operatorname{pr}(\{\text { red }\}) \operatorname{pr}(\{\text { even }\} \mid\{\text { red }\})
$$

- Logically, this is equivalent to asking: What is the probability of observing a red segment with an even number

$$
\operatorname{pr}(\{\text { red }\}) \operatorname{pr}(\{\text { even }\} \mid\{\text { red }\})=\operatorname{pr}(\{\text { even and red }\})
$$

CONDITIONAL PROBABILITIES - DERIVATION

■ Let A denote the set of all red segments
■ Let B denote the set of all even segments

- The set of red segments with an even number is $A \cap B$
- Hence, we can rewrite

$$
\operatorname{pr}(\{\text { red }\}) \operatorname{pr}(\{\text { even }\} \mid\{\text { red }\})=\operatorname{pr}(\{\text { even and red }\})
$$

as follows:

$$
\begin{aligned}
\operatorname{pr}(A) \operatorname{pr}(B \mid A) & =\operatorname{pr}\left(A \cap\left(A^{C} \cup B\right)\right) \\
& =\operatorname{pr}(A \cap B)
\end{aligned}
$$

- Note that this is equivalent to logic calculus:

$$
\begin{aligned}
A \wedge(A \rightarrow B) & =A \wedge(\neg A \vee B) \\
& =A \wedge B
\end{aligned}
$$

CONDITIONAL PROBABILITIES AND BAYES THEOREM

Conditional probability and Bayes theorem

The conditional probability of A given B is defined through

$$
\operatorname{pr}(\boldsymbol{A} \mid \boldsymbol{B}) \operatorname{pr}(\boldsymbol{B})=\operatorname{pr}(\boldsymbol{A} \cap \boldsymbol{B})=\operatorname{pr}(\boldsymbol{B} \mid \boldsymbol{A}) \operatorname{pr}(\boldsymbol{A})
$$

If $\operatorname{pr}(B)>0$ it follows that

$$
\operatorname{pr}(\boldsymbol{A} \mid \boldsymbol{B})=\frac{\operatorname{pr}(\boldsymbol{A} \cap \boldsymbol{B})}{\operatorname{pr}(\boldsymbol{B})}=\frac{\operatorname{pr}(\boldsymbol{B} \mid \boldsymbol{A}) \operatorname{pr}(\boldsymbol{A})}{\operatorname{pr}(\boldsymbol{B})}
$$

This is called Bayes theorem, where we call
$■ \operatorname{pr}(A \mid B)$: the posterior

- $\operatorname{pr}(B \mid A)$: the likelihood
- $\operatorname{pr}(A)$: the prior probability
- $\operatorname{pr}(B)$: the evindence or marginal likelihood

INDEPENDENT EVENTS

Independence

Two events A and B are called independent, if

$$
\operatorname{pr}(A \cap B)=\operatorname{pr}(A \mid B) \operatorname{pr}(B)=\operatorname{pr}(A) \operatorname{pr}(B)
$$

We also denote independence as $A \Perp B$.

- Example:
- We observe two rounds of roulette, associated with random variables X_{1}, and X_{2}
- The probability of observing first black and then red is

$$
\begin{aligned}
\operatorname{pr}\left(X_{1}=\right. & \left.\{\text { black }\}, X_{2}=\{\text { red }\}\right) \\
& =\operatorname{pr}\left(X_{2}=\{\text { red }\} \mid X_{1}=\{\text { black }\}\right) \operatorname{pr}\left(X_{1}=\{\text { black }\}\right) \\
& =\operatorname{pr}\left(X_{2}=\{\text { red }\}\right) \operatorname{pr}\left(X_{1}=\{\text { black }\}\right)
\end{aligned}
$$

THE GAMBLER’S FALLACY

The Gambler's Fallacy [Hacking, 2001]

Consider our roulette game. The Fallacious Gambler reasons as follows:

- The roulette wheel is fair
- I have just observed 12 black spins in a row
- Since the wheel is fair, black and red come up equally often
- Hence, red has to come up pretty soon, I'd better start betting red
The gambler thinks that a sequence of twelve blacks makes it more likely that the wheel will step at red next time. If so, a past sequence affects future outcomes and the wheel is not fair. So trials would not be independent and the gambler's premises are inconsistent.

LAW OF TOTAL PROBABILITY

Law of total probability

Let $B_{1}, B_{2}, \ldots, B_{n}$ denote n mutually independent and exhaustive events, then

$$
\operatorname{pr}(A)=\sum_{i=1}^{n} \operatorname{pr}\left(A \cap B_{i}\right)=\sum_{i=1}^{n} \operatorname{pr}\left(A \mid B_{i}\right) \operatorname{pr}\left(B_{i}\right)
$$

■ Example:

$$
\operatorname{pr}(\{\text { black }\})=\operatorname{pr}(\{\text { black and even }\})+\operatorname{pr}(\{\text { black and odd }\})
$$

■ The set of even and odd segments does not overlap (independence) and covers the full sample space (exhaustive)

EXAMPLES

INDUCTIVE LOGIC AND LEARNING FROM PAST EVENTS

Inductive logic [Hacking, 2001]

Inductive logic is about risky arguments. It analyses inductive arguments using probability. A risky argument can be a very good one, and yet its conclusion can be false.

■ Probability assignments reflect beliefs about events

- They may come from simple distributions or complex models, such as neural networks
- Bayes theorem is used to derive probabilistic if-statements:
- If B has happened, what is the probability of A ?

MEDICAL TESTING

Medical testing

After your yearly checkup, the doctor has bad news and good news. The bad news is that you tested positive for a serious disease, and that the test is 99% accurate (i.e., the probability of testing positive given that you have the disease is 0.99 , as is the probability of testing negative given that you don't have the disease). The good news is that this is a rare disease, striking only one in 10,000 people. What are the chances that you actually have the disease?

MEDICAL TESTING

- Let I denote a random variable indicating infection, i.e. $I=$ true if you are infected
- Let T denote a random variable associated with the test result, i.e. $T=$ true if the test is positive

■ We know that:

- $\operatorname{pr}(I=$ true $)=1 / 10,000$
- $\operatorname{pr}(T=$ true $\mid I=$ true $)=0.99$
- $\operatorname{pr}(T=$ false $\mid I=$ false $)=0.99$

MEDICAL TESTING

$$
\begin{aligned}
\operatorname{pr}(I=\operatorname{true} & \mid T=\text { true }) \\
& =\frac{\operatorname{pr}(T=\text { true } \mid I=\text { true }) \operatorname{pr}(I=\text { true })}{\sum_{i} \operatorname{pr}(T=\text { true } \mid I=i) \operatorname{pr}(I=i)} \\
& =\frac{0.99 \cdot 1 / 10,000}{0.99 \cdot 1 / 10,000+(1-0.99) \cdot(1-1 / 10,000)} \\
& =\frac{0.000099}{0.000099+0.009999} \\
& \approx 0.0098
\end{aligned}
$$

Hence, the chance of actually having the disease is less than 1%.

The Monty Hall problem

The Monty Hall problem

On a game show, a contestant is told the rules as follows: There are three doors, labeled 1, 2, 3. A single prize has been hidden behind one of them with equal probability. You get to select one door. Initially your chosen door will not be opened. Instead, the gameshow host will open one of the other two doors, and he will do so in such a way as not to reveal the prize. For example, if you first choose door 1, he will then open one of doors 2 and 3, and it is guaranteed that he will choose which one to open so that the prize will not be revealed. At this point, you will be given a fresh choice of door: you can either stick with your first choice, or you can switch to the other closed door. All the doors will then be opened, and you will receive whatever is behind your final choice of door.

The Monty Hall problem

The Monty Hall problem

Imagine that the contestant chooses door 1 first; then the gameshow host opens door 3, revealing nothing behind the door, as promised. Should the contestant

■ stick with door 1,

- switch to door 2,

■ does it make a difference?

The Monty Hall problem

■ Let $P \in\{1,2,3\}$ denote a random variable associated with the location of the price

■ Let $D \in\{1,2,3\}$ denote the door that has been opened by the gameshow host

- A priori we have

$$
\operatorname{pr}(P=i)=1 / 3
$$

■ We are interested in the posterior probability

$$
\operatorname{pr}(P=i \mid D=3)=\frac{\operatorname{pr}(D=3 \mid P=i) \operatorname{pr}(P=i)}{\operatorname{pr}(D=3)}
$$

The Monty Hall problem

■ The case $i=1$

$$
\begin{aligned}
\operatorname{pr}(P=1 \mid D=3) & =\frac{\operatorname{pr}(D=3 \mid P=1) \operatorname{pr}(P=1)}{\sum_{i} \operatorname{pr}(D=3 \mid P=i) \operatorname{pr}(P=i)} \\
& =\frac{1 / 2 \cdot 1 / 3}{1 / 2 \cdot 1 / 3+1 \cdot 1 / 3+0 \cdot 1 / 3} \\
& =1 / 3
\end{aligned}
$$

■ The case $i=2$

$$
\begin{aligned}
\operatorname{pr}(P=2 \mid D=3) & =\frac{\operatorname{pr}(D=3 \mid P=2) \operatorname{pr}(P=2)}{\sum_{i} \operatorname{pr}(D=3 \mid P=i) \operatorname{pr}(P=i)} \\
& =\frac{1 \cdot 1 / 3}{1 / 2 \cdot 1 / 3+1 \cdot 1 / 3+0 \cdot 1 / 3} \\
& =2 / 3
\end{aligned}
$$

The Monty Hall problem

■ The case $i=3$

$$
\begin{aligned}
\operatorname{pr}(P=1 \mid D=3) & =\frac{\operatorname{pr}(D=3 \mid P=1) \operatorname{pr}(P=1)}{\sum_{i} \operatorname{pr}(D=3 \mid P=i) \operatorname{pr}(P=i)} \\
& =\frac{0 \cdot 1 / 3}{1 / 2 \cdot 1 / 3+1 \cdot 1 / 3+0 \cdot 1 / 3} \\
& =0
\end{aligned}
$$

- Hence, we have the posterior distribution

$$
\operatorname{pr}(P=i \mid D=3)=(1 / 3,2 / 3,0)
$$

- Switching the door increases the probability of getting the price

PROBABILITY DISTRIBUTIONS

BERNOULLI DISTRIBUTION

Bernoulli distribution

Let X be a random variable taking values in $\{0,1\}$. If X follows a Bernoulli distribution with parameter p, i.e.

$$
X \sim \operatorname{Bernoulli}(p)
$$

then

$$
\operatorname{pr}(X=1)=p .
$$

■ Flipping a coin once can be modeled using a Bernoulli distribution

- The coin is fair if $p=1 / 2$

CATEGORICAL DISTRIBUTION

Categorical or multinoulli distribution

Let X be a random variable taking values in $\{0,1, \ldots, k\}$ for any integer $k>0$. If X follows a categorical distribution with parameters $p=\left(p_{1}, \ldots, p_{k}\right)$ such that $\sum_{i} p_{i}=1$, i.e.

$$
X \sim \text { Categorical }(p)
$$

then

$$
\operatorname{pr}(X=i)=p_{i}
$$

- The categorical distribution is the extension of the Bernoulli distribution to k outcomes

GEOMETRIC DISTRIBUTION

Geometric distribution

Let X be a random variable taking values in $\{1,2,3, \ldots\}$. If X follows a geometric distribution with parameter $p \in[0,1]$, i.e.

$$
X \sim \operatorname{Geometric}(p)
$$

then

$$
\operatorname{pr}(X=k)=(1-p)^{k-1} p .
$$

■ The probability distribution of the number X of Bernoulli trials needed to get one success

- It gives the probability that the first occurrence of success requires k independent trials, each with success probability p.

NORMAL DISTRIBUTION

Normal or Gaussian distribution

Let X be a random variable taking values in \mathbb{R}. If X follows a normal distribution with parameters $\mu \in \mathbb{R}$ and $\sigma>0$, i.e.

$$
X \sim \operatorname{Normal}(\mu, \sigma)
$$

then

$$
\operatorname{pr}(X \in A)=\int_{A} f_{\mu, \sigma}(x) \mathrm{d} x
$$

where $f_{\mu, \sigma}$ is the normal density function

$$
f_{\mu, \sigma}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) .
$$

NORMAL DISTRIBUTION

■ The probability distribution of continuous random variables is usually defined through density functions

■ For continuous distributions we have $\operatorname{pr}(X=x)=0$ for all $x \in \mathbb{R}$, i.e. the probability that a single real value is observed is always zero

PARAMETER ESTIMATION

PARAMETER ESTIMATION

■ Assume we observed n realisations $x=\left(x_{1}, \ldots, x_{n}\right)$ from a known distribution with unknown parameters θ

■ How can we estimate the values of θ ?
■ Bayes theorem

$$
\operatorname{pr}(\theta \mid x)=\frac{\operatorname{pr}(x \mid \theta) \operatorname{pr}(\theta)}{\operatorname{pr}(x)}
$$

■ We take the value with highest probability, i.e.

$$
\hat{\theta}=\underset{\theta}{\arg \max } \operatorname{pr}(\theta \mid x)
$$

this is called the maximum a-posteriori (MAP) estimate

PARAMETER ESTIMATION I

■ Constants can be dropped when computing the MAP, i.e.

$$
\begin{aligned}
\hat{\theta} & =\underset{\theta}{\arg \max } \operatorname{pr}(\theta \mid x) \\
& =\underset{\theta}{\arg \max } \frac{\operatorname{pr}(x \mid \theta) \operatorname{pr}(\theta)}{\operatorname{pr}(x)} \\
& =\underset{\theta}{\arg \max } \operatorname{pr}(x \mid \theta) \operatorname{pr}(\theta) \\
& =\underset{\theta}{\arg \max }[\log \operatorname{pr}(x \mid \theta)+\log \operatorname{pr}(\theta)]
\end{aligned}
$$

since $\operatorname{pr}(x)$ does not depend on θ. We can apply the logarithm, because it is a monotonic (order preserving) function, which does not change the position of the maximum

PARAMETER ESTIMATION II

- If we assume that we have no prior information on θ, i.e. $\operatorname{pr}(\theta)$ is uniform (constant), then we obtain the maximum likelihood (ML) estimate

$$
\hat{\theta}=\underset{\theta}{\arg \max } \operatorname{pr}(x \mid \theta)
$$

Parameter estimation - Continuous variables

■ For continuous variables we know that

$$
\operatorname{pr}(x \mid \theta)=0
$$

and therefore also $\operatorname{pr}(x)$ is zero, which causes the posterior distribution to be undefined

■ There exists a Bayes theorem for densities

$$
f(\theta \mid x)=\frac{f(x \mid \theta) f(\theta)}{f(x)}
$$

■ Hence, the MAP for continuous variables is simply

$$
\begin{aligned}
\hat{\theta} & =\underset{\theta}{\arg \max } f(x \mid \theta) f(\theta) \\
& =\underset{\theta}{\arg \max }[\log f(x \mid \theta)+\log f(\theta)]
\end{aligned}
$$

NORMAL DISTRIBUTION

■ Assume we observed n realisations $x=\left(x_{1}, \ldots, x_{n}\right)$ from $X \sim \operatorname{Normal}(\mu, \sigma)$ with unknown μ and σ

■ Furthermore, let's assume we have no prior information about μ and σ, i.e. the prior probability $\operatorname{pr}(\mu, \sigma)$ is uniform

■ We derive the ML estimate

$$
\begin{aligned}
\hat{\mu}, \hat{\sigma} & =\underset{\mu, \sigma}{\arg \max } f_{\mu, \sigma}(x) \\
& =\underset{\mu, \sigma}{\arg \max } \prod_{i=1}^{n} f_{\mu, \sigma}\left(x_{i}\right) \\
& =\underset{\mu, \sigma}{\arg \max } \sum_{i=1}^{n} \log f_{\mu, \sigma}\left(x_{i}\right)
\end{aligned}
$$

NORMAL DISTRIBUTION

■ We derive the ML estimate

$$
\begin{aligned}
\hat{\mu}, \hat{\sigma} & =\underset{\mu, \sigma}{\arg \max } \sum_{i=1}^{n} \log f_{\mu, \sigma}\left(x_{i}\right) \\
& =\underset{\mu, \sigma}{\arg \max }+\log \left(\frac{1}{\sqrt{2 \pi \sigma^{2}}}\right)^{n}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} \\
& =\underset{\mu, \sigma}{\arg \max }-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
\end{aligned}
$$

NORMAL DISTRIBUTION

■ We derive the ML estimate of μ

$$
\begin{array}{rlrl}
& & \frac{\partial}{\partial \mu}\left[-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right] & =0 \\
\Rightarrow & -\frac{\partial}{\partial \mu} \frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} & =0 \\
\Rightarrow & & \frac{\partial}{\partial \mu} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} & =0 \\
\Rightarrow & & \sum_{i=1}^{n}-2\left(x_{i}-\mu\right) & =0
\end{array}
$$

NORMAL DISTRIBUTION

We derive the ML estimate of σ^{2}

$$
\begin{array}{rlrl}
& & \frac{\partial}{\partial \sigma^{2}}\left[-\frac{n}{2} \log \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right] & =0 \\
\Rightarrow & -\frac{n}{2} \frac{1}{\sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} & =0 \\
\Rightarrow & \frac{1}{2 \sigma^{2}}\left[-n+\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right] & =0 \\
\Rightarrow & \frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} & =n \\
\Rightarrow & & \sigma^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
\end{array}
$$

■ [Hacking, 2001]

References

R
HACKIng, I. (2001).
An introduction to probability and inductive logic. Cambridge university press.

周 Kolmogoroff, A. (1933).
GRUNDBEGRIFFE DER WAHRSCHEINLICHKEITSRECHNUNG.

