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Linear Regression



Motivation

Solid understanding of linear regression allows us to
understand many aspects of complex models, including
neural networks

Many models can be derived from linear regression,
including polynomial, kernel, and logistic regression, as well
as neural networks

We start from a Bayesian perspective and show how to
derive the linear regression model and a method for
parameter estimation with a specific focus on model
assumptions
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Bayes theorem

Bayes theorem:

pr(H | X) = pr(X |H)pr(H)
pr(X)

where pr(H | X) is the posterior distribution of a hypothesis H
given observed data X, pr(X |H) the likelihood, pr(H) the
prior distribution, and pr(X) the marginal likelihood

H is our hypothesis and can take many forms, e.g.

▶ In case of the spam classifier we had H = ′spam′

▶ H can also refer to the parameter of a distribution, e.g. when
we want to estimate the mean of a normal distribution

In any case, probabilities depend on our model assumptions
and therefore are a subjective choice
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Linear Regression

Let Y be the dependent variable (response variable) and X the
independent variable (covariate, or predictor):

X

Y

We assume the following model

Y = f (X) + ϵ

where f is a linear function that models the expectation E[Y | X],
and ϵ is a noise term (e.g. ϵ ∼ Normal(0, σ2))
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Linear Regression

We can also write Y ∼ Normal(f (X), σ2)

We assume no distribution for X

We assume f is a linear function, i.e.

f (x) = ax + b

How can we generate data (xi, yi)i with this model?

▶ For i = 1, . . . ,n:
Select some value for xi
Draw ϵi from Normal(0, σ2)
Compute yi = f (xi) + ϵi
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Linear Regression - Parameter estimation

In the Bayesian framework, parameters are estimated using
the posterior distribution

We want to know the probability of our hypothesis or
parameters θ = (a,b) given a set of n observations
x = (xi)ni=1 and y = (xi)ni=1

An estimate θ̂ of our parameters θ can be computed as the
maximum a posterior (MAP) estimate

θ̂ = argmax
θ

pr(θ | x, y)

There are other choices, for instance the posterior
expectation, which all have their justifications

We use the MAP for linear regression, because it leads to a
computationally simple solution
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Linear Regression - Parameter estimation

For a flat prior, the MAP is equivalent to the maximum
likelihood estimate (MLE), i.e.

θ̂ = argmax
θ

pr(θ | x, y)

= argmax
θ

pr(x, y | θ)pr(θ)
pr(x, y)

= argmax
θ

pr(x, y | θ)pr(θ)

= argmax
θ

pr(x, y | θ)

assuming pr(θ) is constant1

This result is not specific to linear regression models
1A uniform prior pr(θ) is called improper prior when θ is a continuous

variable, because pr(θ) does not integrate to one
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Linear Regression - Parameter estimation

Furthermore, we have

θ̂ = argmax
θ

pr(x, y | θ)

= argmax
θ

pr(y | x, θ)pr(x | θ)

= argmax
θ

pr(y | x, θ)

In the last step we took advantage of the fact that the
distribution of our covariates x does not depend on the
parameters θ, which are the slope and intercept of the linear
function

In fact, we do not have do assume a particular distribution
for our covariates!
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Linear Regression - OLS

Plugging in our normal distribution we arrive at

θ̂ = argmax
θ

pr(y1 . . . yn | x1, . . . , xn, θ)

= argmax
θ

n∏
i=1

pr(yi | xi, θ)

= argmax
θ

n∑
i=1

log pr(yi | xi, θ)

= argmax
θ

n∑
i=1

log
1

σ
√

2π
exp

{
−(yi − f (xi))2

2σ2

}

= argmax
θ

n∑
i=1

−(yi − f (xi))2
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Linear Regression - OLS

The estimate

θ̂ = argmin
θ

n∑
i=1

(yi − f (xi))2

= argmin
θ

n∑
i=1

(yi − ŷi)2

is called the ordinary least squares (OLS) estimate

It minimizes the squared error between our prediction ŷi and
our observations yi

In other words, it minimizes the squared residuals
ϵi = yi − f (xi)
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Linear Regression - Generalization

For generalizing linear regression to multiple predictors, we
first define

x =
[

1
x̃

]
, θ =

[
θ1
θ2

]
i.e. x is a vector where the first component is always 1

This definition allows to write

f (x) = b+ ax̃
= θ1 + θ2x̃

=

[
1
x̃

]⊤ [
θ1
θ2

]
= x⊤θ
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Linear Regression - Generalization

Adding additional predictors is now very simple

x =


1
x(2)

...
x(p)

 , θ =


θ1
θ2
...
θp


The number of predictors / features is given by p, where the
first predictor is (1, 1, . . . , 1)⊤

It follows that

f (x) = x⊤θ
= θ1 + x(2)θ2 + · · ·+ x(p)θp
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Linear Regression - Notation

In general, we have n observations and p predictors
For the ith observation (xi, yi), yi is a scalar and xi a vector

xi = (1, x(2)i , . . . , x(p)i )⊤

We define the matrix

X =


x(1)1 x(2)1 . . . x(p)1
x(1)2 x(2)2 . . . x(p)2

...
... . . . ...

x(1)n x(2)n . . . x(p)n

 =


1 x(2)1 . . . x(p)1
1 x(2)2 . . . x(p)2
...

... . . . ...
1 x(2)n . . . x(p)n
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Linear Regression - Notation

This notation allows us to write linear regression as
y1
y2
...
yn

 =


1 x(2)1 . . . x(p)1
1 x(2)2 . . . x(p)2
...

... . . . ...
1 x(2)n . . . x(p)n



θ1
θ2
...
θp

+


ε1
ε2
...
εn


Or in matrix notation simply as

y = Xθ + ϵ

Data matrix X
For a data matrix X ∈ Rn×p, rows will always correspond to
observations and columns correspond to features. The first
column is the vector (1, 1, . . . , 1)⊤. We always assume that X has
full rank, i.e. rank(X) = min(n,p)
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Linear Regression - OLS

If n > p and X⊤X has full rank we can use ordinary least squared
(OLS) to estimate θ:

θ̂ = argmin
θ

∥ϵ∥2
2 = argmin

θ
∥y − Xθ∥2

2

Differentiation with respect to θ and solving for the roots leads
to:

⇒ θ̂ = (X⊤X)−1X⊤y
= X⊤y if X⊤X = I

X(X⊤X)−1X⊤ is called a projection matrix. . .
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Linear Regression - OLS Projection

Let Xθ = v1θ1 + v2θ2 + . . . vpθp, where vi denotes the ith column of
X

θ̂ = argmin
θ

∥y − Xθ∥2
2

v1

v2
X = [v1, v2]

Rn (n = 3, p = 2)

ŷ = Xθ̂

y

ε

X(X⊤X)−1X⊤y projects y onto the plane defined by the columns of X

1[Hastie et al., 2009]
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v1

v2
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y = ŷ = Xθ̂
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Linear Regression - OLS Projection

Let Xθ = v1θ1 + v2θ2 + . . . vpθp, where vi denotes the ith column of
X

θ̂ = argmin
θ

∥y − Xθ∥2
2

v1

v2

v3

X = [v1, v2, v3]

Rn (n = 3, p = 3)

y = ŷ = Xθ̂

If p ≥ n then ϵ = 0 and for p > n we have infinitely many solutions
(assuming vi are pairwise independent)

1[Hastie et al., 2009]
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Linear Regression - Underdetermined OLS

For p > n the OLS estimate

θ̂ = argmin
θ

∥y − Xθ∥2
2

has infinitely many solution θ̂ such that
∥∥∥y − Xθ̂

∥∥∥2

2
= 0 !

Which one should we choose?

Remember our initial model

y = Xθ + ϵ

and yet the estimate θ̂ satisfies y = Xθ̂

Either ϵ = 0 or θ̂ contains all the noise
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Linear Regression - Underdetermined OLS

For instance, we could take that θ with minimal length, i.e. the
minimum ℓ2-norm solution2

argmin
θ

∥θ∥2
2

subject to Xθ = y

The solution is almost equivalent to the standard OLS solution,
i.e.

θ̂ = (X⊤X)+X⊤y

where (X⊤X)+ Moore-Penrose pseudoinverse3 of X⊤X.
2Common practice for training neural networks
3The Moore-Penrose pseudoinverse of a matrix X is computed as follows:

Let X = SΣV⊤ be the singular value decomposition of X, where Σ is a diagonal
matrix containing the singular values. X+ = SΣ+V⊤ where Σ+ contains the
reciprocal of all non-zero singular values.
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Linear Regression - Ridge Regression

Ridge Regression
The ridge regression estimate is defined as

θ̂(λ) = argmin
θ

∥Xθ − y∥2
2 + λ ∥θ∥2

2

where λ is called the regularization strength or penalty. Note
that ∥θ∥2

2 =
∑n

i=2 θ
2
i , i.e. θ1 is not constrained

There exists an analytical solution to the ridge estimate:

θ̂(λ) = (X⊤X + λI)−1X⊤y

In the overparameterized case, for λ > 0 we obtain ∥ϵ∥2
2 > 0

3Convex optimization: [Boyd and Vandenberghe, 2004]
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Linear Regression - Ridge Regression

For λ → ∞ the estimate λθ̂(λ) converges to the
componentwise regression estimator

For λ → 0 the estimate θ̂(λ) converges to the minimum
ℓ2-norm OLS solution4

The penalty λ ∥θ∥2
2 can be interpreted as a Gaussian prior

Ridge regression is useful when n < p and n ≥ p

4A+ λI is invertible even for very small λ. In numerics, A+ λI is also used as
a trick to ensure that a matrix is positive-definite.
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Kernel Regression



Polynomial Regression

How can we change linear regression to model non-linear
relations between X and Y?

X

Y
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Regression in Feature Space

Polynomial regression

Y = θ1 + θ2X+ θ3X2 + θ4X3 + · · ·+ ϵ ,

More generally, we write

Y = ϕ(X)θ + ϵ ,

where ϕ : Rp → Rp′ is a feature map that maps points in
p-dimensional input space into a p′-dimensional feature space,
e.g.

ϕ(X) = (1,X,X2,X3, . . . )

Basically linear (or ridge) regression in p′-dimensional feature
space, but non-linear in input space
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Kernel Regression

What if we do not know the exact set of features for our
data?
Can we simply test a large amount of possible features?
Can we have more features than observations, i.e. n ≤ p?

Ridge regression in feature space:

θ̂(λ) = argmin
θ

∥ϕ(X)θ − y∥2
2 + λ ∥θ∥2

2

where ϕ is applied to each row of X, i.e. ϕ(X) ∈ Rn×p′ .

Computationally expensive if p′ ≫ p and n≫ 1, assuming X is
not sparse.
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Kernel Regression

Reformulate the ridge regression estimate

θ̂(λ) = argmin
θ

∥ϕ(X)θ − y∥2
2 + λ ∥θ∥2

2

using kernels. Let θ = ϕ(X)⊤η, where η ∈ Rn is a new parameter
vector and θ ∈ span(ϕ(x1), . . . , ϕ(xn)) ⊂ Rp. It follows that

η̂(λ) = argmin
η

∥∥∥ϕ(X)ϕ(X)⊤η − y
∥∥∥2

2
+ λ

∥∥∥ϕ(X)⊤η∥∥∥2

2

= argmin
η

∥Kη − y∥2
2 + λη⊤Kη

where K = ϕ(X)ϕ(X)⊤ ∈ Rn×n is the kernel matrix.
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Kernel Regression

Definition: Kernel function
A function κ : X × X → R is called a kernel if there exists a
feature map ϕ : X → F such that

κ(xi, xj) = ϕ(xi)⊤ϕ(xj)

K = (κ(xi, xj))xi∈X ,xj∈X is called the kernel matrix.

X can be an arbitrary space, for instance DNA sequences
κ(xi, xj) is interpreted as a similarity measure in feature
space
Evaluating κ(xi, xj) does not always require to explicitly
compute ϕ(x)
Not having to map data into feature space is called the
kernel trick
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Example Kernels

Linear kernel

κ(xi, xj) = x⊤i xj, where ϕ(x) = x

Polynomial kernel

κ(xi, xj) = (x⊤i xj + 1)d

where d > 0 is the degree. For X = R2 and d = 2

ϕ(x) = (1,
√

2x1,
√

2x2, x2
1 , x2

2,
√

2x1x2)
⊤

Radial basis function (RBF) kernel

κ(xi, xj) = exp

(
−
∥∥xi − xj

∥∥2
2

2σ2

)

where the feature space has infinite dimensions
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Predictions

Let xnew denote the position where we would like to compute a
prediction ŷ

Linear Regression
ŷ = ϕ(xnew)

⊤θ̂

Kernel Regression

ŷ =
n∑
i=1

κ(xi, xnew)η̂i = ϕ(xnew)
⊤ϕ(X)⊤η̂

which requires the full training set X = (xi)i ∈ Rn×p, where
we simply used the definition θ = ϕ(X)⊤η to replace θ̂ in the
prediction of the linear regression model
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Parameters and Hyperparameters

We call θ and η the parameters of a (kernel) regression model

The parameters of a kernel function (e.g. σ2 for the RBF
kernel) or the regularization strength λ are also parameters
of the model, but one step further up the hierarchy

We call the parameters of a kernel function and the
regularization strength hyperparameters

In a Bayesian setting, the parameters control the likelihood
function, whereas the hyperparameters parametrize the
prior distribution
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Kernel Regression - Pros and Cons

Pros:
Computationally efficient regression for high-dimensional
feature spaces for moderate data sets
Implicit regularization, i.e. only as many parameters as data
points (but equivalent to minimum ℓ2-norm solution of
standard regression)

Cons:
Kernel matrix grows quadratically with number of samples
θ ∈ Rp ⇝ η ∈ Rn, which creates dependencies between
features
Interpretation of parameters in feature space requires
computation of ϕ(X)⊤η
For infinite feature spaces ϕ cannot be computed
No feature selection possible (ℓ1 penalty)
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Random Features

Kernel matrix grows quadratically with the number of data
points, which prevents kernel methods to be applied to large
data sets.

Basic idea5: Define a mapping ξ : X → Rq with q≪ p such that

κ(xi, xj) = ϕ(xi)⊤ϕ(xj) ≈ ξ(xi)⊤ξ(xj)

Regression can then be performed in Rq after explicitly mapping
each data point to the reduced feature space.

How do we compute ξ?

5[Rahimi et al., 2007]
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Random Features

Bochner’s theorem
A continuous shift-invariant kernel κ : Rd × Rd → C with
κ(xi, xj) = κ(xi − xj) is positive definite iff there exists a
non-negative measure µ such that

κ(xi − xj) =
∫
Rd

exp
(
iω⊤(xi − xj)

)
dµ(ω)

= Eω exp(iω⊤(xi − xj)) = Eω exp(iω⊤xi) exp(iω⊤xj)∗ .

I.e. the kernel κ is the (inverse) Fourier transform of µ.

When both κ and µ are real-valued then

κ(xi − xj) = Eω cos(ω⊤(xi − xj))

5x∗ is the complex conjugate of x and remember that exp(ix)∗ = exp(−ix)
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Random Features

Monte Carlo approximation
Let µ be a distribution and ω a random variable with distribution
µ. From the law of large numbers it follows that

Eω f (ω) =
∫
f (x)dµ(x) ≈ 1

q

q∑
j=k

f (ωk)

where ω1, . . . ωq are independent samples from µ.

Monte Carlo approximation of the Fourier integral

ωk
i.i.d.∼ µ

κ(xi, xj) ≈ 1
q
∑q

k=1 exp(iω
⊤
k (xi − xj)) = ξ(xj)∗ξ(xi)

where ξ(x) = 1√q
(
exp(iω⊤

1 x), . . . , exp(iω⊤
q x)
)⊤.
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Random Features

In practice: We know the kernel κ and must derive the measure
µ. Afterwards, we can approximate κ by drawing q samples ωk
from µ and map x into feature space using

ξ(x) = 1
√q

(
exp(iω⊤

1 x), . . . , exp(iω⊤
q x)
)⊤

.

The measure µ is given by the Fourier transform of κ with density

fµ(ω) =
∫
Rd

exp
(
−iω⊤δ

)
κ(δ)dδ , where δ = xi − xj
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Random Features

Example: Radial basis function (RBF) kernel (infinite dimensional
feature space)

κ(xi, xj) = exp

(
−
∥∥xi − xj

∥∥2
2

2σ2

)

The measure µ is given by a spherical normal distribution
(Σ = σ2I) with density

fµ(ω) =
1

(2πσ2)d/2 exp

(
−
∥ω∥2

2
2σ2

)
Since κ and µ are real, we have

ξ(x) = 1
√q

(
cos(ω⊤

1 x), sin(ω⊤
1 x), . . . , cos(ω⊤

q x), sin(ω⊤
q x)
)⊤

5cos(xi − xj) = cos(xi) cos(xj) + sin(xi) sin(xj)
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Random Features

Exact RBF kernel q = 1 q = 10 q = 100

34 35



Random Features

X

Y

q = 1
Fourier
RBF

X
Y

q = 3
Fourier
RBF

X

Y

q = 5
Fourier
RBF

Kernel regression is not identical to linear regression with
random Fourier features
As many parameters as random Fourier features
Regularization must be used to prevent overfitting
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Guide to Kernel Regression

no

Big data?

no

no

Kernel

regression

Random Fourier
approximation

yes

Linear data?

Linear

regression
yes

Small amount

of features?

Linear regression
in feature space

yes

Is data sparse in

feature space?

yes

no

no

Loss of interpretability

5The complexity of kernel regression can be reduced by computing
approximate solutions with batch gradient descent
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