Machine Learning in Bioinformatics

From Logistic Regression to SVMs

Philipp Benner
philipp.benner@bam.de
VP. 1 - eScience
Federal Institute of Materials Research and Testing (BAM)

April 25, 2024

LOGISTIC REGRESSION (CLASSIFICATION)

LINEAR REGRESSION AND CLASSIFICATION

Linear regression

$$
y=X \theta+\epsilon, \quad y \in \mathbb{R} \quad y \stackrel{?}{=} \sigma(X \theta)+\epsilon, \quad y \in\{0,1\}
$$

Logistic regression

How is the hyperplane defined? What is σ ?

DEFINING HYPERPLANES

■ We use the properties of the dot product to define the separating hyperplane:

$$
x^{\top} \theta=\|x\|\|\theta\| \cos \measuredangle
$$

■ For vectors x perpendicular to θ we have $\cos \measuredangle=0$

DEFINING HYPERPLANES

■ For hyperplanes with bias b we use $x^{\top} \theta=b$

$$
\begin{aligned}
x^{\top} \theta & =\left(x_{b}+\tilde{x}\right)^{\top} \theta \\
& =\underbrace{x_{b}^{\top} \theta}_{=b}+\underbrace{\tilde{x}^{\top} \theta}_{=0}
\end{aligned}
$$

DEFINING HYPERPLANES

■ Remember our convention:

$$
x=\left[\begin{array}{c}
1 \\
x^{(2)} \\
\vdots \\
x^{(p)}
\end{array}\right], \quad \theta=\left[\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{p}
\end{array}\right]
$$

■ Hence, instead of $x^{\top} \theta=b$ we can write $x^{\top} \theta=0$, because $\theta_{1}=-b$

SEPARATING HYPERPLANE

- $x^{\top} \theta>0$: predicting positive class
- $x^{\top} \theta<0$: predicting negative class

LOGISTIC REGRESSION

■ We convert $x^{\top} \theta$ to probabilities

$$
\operatorname{pr}(Y=1 \mid x)=\sigma\left(x^{\top} \theta\right)
$$

- The function σ denotes the sigmoid function

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

LOGISTIC REGRESSION

■ Given a training set (X, y) how do we estimate θ ?
■ Option 1: Minimizing squared error (similar to OLS)

$$
\hat{\theta}=\underset{\theta}{\arg \min } \sum_{i=1}^{n}\left[y_{i}-\sigma\left(x_{i}^{\top} \theta\right)\right]
$$

Problem: Not convex!
■ Remember how we justified OLS for linear models?
■ Option 2: Maximum likelihood

$$
\hat{\theta}=\underset{\theta}{\arg \max } \operatorname{pr}(y \mid X, \theta)
$$

LOGISTIC REGRESSION

- What is the probability of (X, y) ?

■ Remember a Bernoulli experiment (coin flip) with outcomes H (head) and T (tail)

■ H is observed with probability p
■ T is observed with probability $1-p$
■ The sequence HHTHT has probability

$$
\operatorname{pr}(\text { HHTHT })=p p(1-p) p(1-p)
$$

■ Remember the following rule of thumb:

$$
\begin{aligned}
& \times=\text { "and" } \\
& +=\text { "or" }
\end{aligned}
$$

LOGISTIC REGRESSION

■ For logistic regression, assume $y=(1,1,0,1)$, hence

$$
\operatorname{pr}(1,1,0,1 \mid X, \theta)=\sigma\left(x_{1}^{\top} \theta\right) \sigma\left(x_{2}^{\top} \theta\right)\left(1-\sigma\left(x_{3}^{\top} \theta\right)\right) \sigma\left(x_{4}^{\top} \theta\right)
$$

■ Write it nicely in general form:

$$
\operatorname{pr}(y \mid X, \theta)=\prod_{i=1}^{n} \sigma\left(x_{i}^{\top} \theta\right)^{y_{i}}\left(1-\sigma\left(x_{i}^{\top} \theta\right)\right)^{1-y_{i}}
$$

■ Maximum likelihood

$$
\begin{aligned}
\hat{\theta} & =\underset{\theta}{\arg \max } \prod_{i=1}^{n} \sigma\left(x_{i}^{\top} \theta\right)^{y_{i}}\left(1-\sigma\left(x_{i}^{\top} \theta\right)\right)^{1-y_{i}} \\
& =\underset{\theta}{\arg \max } \sum_{i=1}^{n} y_{i} \log \sigma\left(x_{i}^{\top} \theta\right)+\left(1-y_{i}\right) \log \left(1-\sigma\left(x_{i}^{\top} \theta\right)\right)
\end{aligned}
$$

■ Convex optimization problem, but must be solved numerically

SUPPORT VECTOR MACHINES (SVMs)

SUPPORT VECTOR MACHINES

■ Support vector machines (SVMs) are similar to logistic regression, however, their learning algorithm is geometrically motivated:

■ What is the best separating hyperplane?

SUPPORT VECTOR MACHINES

■ SVMs take the hyperplane with maximum margin m:

■ Data points touching the margin are called support vectors
■ What is m and how can we maximize it?

SUPPORT VECTOR MACHINES

■ Computing the margin m given a fixed hyperplane:

■ Hence, the margin is determined by the scalar projection of $x^{+}-x^{-}$onto $\theta /\|\theta\|$:

$$
m=\left(x^{+}-x^{-}\right)^{\top} \frac{\theta}{\|\theta\|_{2}}
$$

SUPPORT VECTOR MACHINES

- So far we did not enforce any constraints on θ

■ There are infinitely many θ for the same separating hyperplane

■ We apply the constraint

$$
\left(x^{+}\right)^{\top} \theta=1, \quad\left(x^{-}\right)^{\top} \theta=-1
$$

for positive x^{+}and negative x^{-}support vectors
■ This definition leads to a simplified margin:

$$
\begin{aligned}
m & =\left(x^{+}-x^{-}\right)^{\top} \frac{\theta}{\|\theta\|_{2}} \\
& =\frac{2}{\|\theta\|_{2}}
\end{aligned}
$$

SUPPORT VECTOR MACHINES

SVM optimization problem

Let $\left(x_{i}, y_{i}\right)_{i}$ denote a training set such that $y_{i} \in\{-1,1\}$. The parameters of the SVM are estimated as follows:

$$
\begin{aligned}
\hat{\theta}=\underset{\theta}{\arg \min } & \|\theta\|_{2} \\
\text { s.t. } \quad & x_{i}^{\top} \theta y_{i} \geq 1
\end{aligned}
$$

■ Note that minimizing $\|\theta\|_{2}$ is equivalent to maximizing the margin $2 /\|\theta\|_{2}$
■ The solution can be computed using the Lagrangian

$$
L(\theta, \lambda)=\frac{1}{2}\|\theta\|_{2}-\sum_{i=1}^{n} \lambda_{i}\left(x_{i}^{\top} \theta y_{i}-1\right)
$$

■ The solution is a saddle point of the Lagrangian $L(\theta, \lambda)$

SUPPORT VECTOR MACHINES

SVM dual problem

The solution of the SVM is obtained by maximizing the dual problem

$$
\begin{aligned}
Q(\lambda) & =\min _{\theta} L(\theta, \lambda) \\
& =\sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} x_{i}^{\top} x_{j}
\end{aligned}
$$

subject to $\lambda_{i} \geq 0$.

- We have a Lagrange multiplier λ_{i} for each data point

■ λ_{i} is zero except for support vectors

- The dual problem is solved using the Sequential minimal optimization (SMO) algorithm [Cristianini et al., 2000]
\square The dual representation depends on $x_{i}^{\top} x_{j}$

SUPPORT VECTOR MACHINES

■ What if the data is not linearly separable? Option 1: Slack variables

SVM optimization problem for non-linearly separable data

Let $\left(x_{i}, y_{i}\right)_{i}$ denote a training set such that $y_{i} \in\{-1,1\}$. The parameters of the SVM are estimated as follows:

$$
\begin{array}{rlrl}
\hat{\theta}= & \underset{\theta}{\arg \min } & \|\theta\|_{2}+C \sum_{i=1}^{n} \xi_{i} \\
\text { s.t. } & x_{i}^{\top} \theta y_{i} \geq 1-\xi_{i}
\end{array}
$$

where C is the slack panelty.
■ $C=\infty$: Data must be linearly separated. $C=0$: Ignore data.

- The dual problem is almost identical to the case of linearly separable data

SUPPORT VECTOR MACHINES - SLACK VARIABLES

■ The effect of the slack penalty:

■ $C=0.001$: Some misclassified points are almost ignored
■ $C=100.0$: Get as close as possible to misclassified points

Support Vector machines - Feature space

■ What if the data is not linearly separable?
Option 2: Feature space

- $x_{i}^{\top} x_{j}$ measures similarity in input space
- $\phi\left(x_{i}\right)^{\top} \phi\left(x_{j}\right)$ measures similarity in feature space
- Dimension of feature space is typically much larger
- Data often becomes linearly separable

Support Vector machines - Feature space

■ Example: $\phi\left(x^{(1)}, x^{(2)}\right)=\left(x^{(1)}, x^{(2)}, x^{(1)} X^{(1)}+x^{(2)} X^{(2)}\right)$

■ Projection of the hyperplane back to input space will result in a non-linear decision boundary

SUPPORT VECTOR MACHINES - KERNELS

Definition: Kernel function

A function $\kappa: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called a kernel if there exists a feature map $\phi: \mathcal{X} \rightarrow \mathcal{F}$ such that

$$
\kappa\left(x_{i}, x_{j}\right)=\phi\left(x_{i}\right)^{\top} \phi\left(x_{j}\right)
$$

$K=\left(\kappa\left(x_{i}, x_{j}\right)\right)_{x_{i} \in \mathcal{X}, x_{j} \in \mathcal{X}}$ is called the kernel matrix.
■ \mathcal{X} can be an arbitrary space, for instance DNA sequences

- $\kappa\left(x_{i}, x_{j}\right)$ is interpreted as a similarity measure in feature space
■ Evaluating $\kappa\left(x_{i}, x_{j}\right)$ does not always require to explicitly compute $\phi(x)$
- Not having to map data into feature space is called the kernel trick

Support vector machines - RBF Kernel

■ The Gaussian or radial basis function (RBF) kernel:

$$
k\left(x_{i}, x_{j}\right)=\exp \left\{-\frac{\left\|x_{i}-x_{j}\right\|_{2}^{2}}{2 \sigma^{2}}\right\}
$$

■ Instead of the dot product $x_{i}^{\top} x_{j}$ we use the difference $x_{i}-x_{j}$ as the similarity measure

- What is the corresponding feature map ϕ ?
- Taylor expansion of the kernel leads to

$$
\phi(x)=\exp \left(-\frac{x^{2}}{2 \sigma^{2}}\right)\left[1, \sqrt{\frac{1}{1!\sigma^{2}}} x, \sqrt{\frac{1}{2!\sigma^{4}}} x^{2}, \sqrt{\frac{1}{3!\sigma^{6}}} x^{3}, \ldots\right]
$$

■ Feature space of the RBF kernel has infinite dimensions

SUPPORT VECTOR MACHINES - κ-SPECTRUM KERNEL

- Suppose our input data is DNA sequences or any other type of strings
- How would we measure the similarity of two strings x_{i} and x_{j} ?

■ Feature map ϕ of the κ-spectrum kernel counts the number of occurrences of substrings of length κ

- Example:

$$
\begin{aligned}
& x_{1}=\text { "statistics" } \\
& x_{2}=\text { "computation" }
\end{aligned}
$$

■ For $\kappa=3$ we get:

$$
\phi\left(x_{1}\right)=\left[\begin{array}{ccccccc}
\text { aaa } & \text { aab } & \ldots & \text { sta } & \ldots & \text { tat } & \ldots \\
0 & 0 & \ldots & 1 & \ldots & 1 & \ldots .
\end{array}\right]
$$

■ $k\left(x_{1}, x_{2}\right)=\phi\left(x_{1}\right)^{\top} \phi\left(x_{2}\right)=1 \cdot 1+1 \cdot 1=2$

- We don't have to compute ϕ explicitly, only count the common substrings

SUPPORT VECTOR MACHINES - GAPPED κ-MERS

■ l: word or substring length
■ k : number of non-gaps

■ Number of gapped κ-mers:

$$
\binom{l}{k} 4^{\kappa}
$$

■ Requires very efficient implementation (e.g. gkmSVM [Ghandi et al., 2014])

SUPPORT VECTOR MACHINES - SUMMARY

■ Support vector machines and logistic regression have different learning objectives
■ SVMs maximize the margin between positive and negative samples
■ Two approaches to deal with non-linearly separable data:

- Slack variables to weaken the separability objectives
- Implicit mapping into high-dimensional feature space with Kernels
■ SVMs and logistic regression have different number of parameters:
- SVMs: One parameter for each training point
- Logistic regression: One parameter for each feature

■ Evaluation of the kernel matrix takes $\mathcal{O}\left(n^{2}\right)$ steps

SUPPORT VECTOR MACHINES - READING

■ Reading: Chapter 12 [Hastie et al., 2009], Section 6.1 [Cristianini et al., 2000]
■ Advanced reading: Representer Theorem

References

CRistianini, N., Shawe-Taylor, J., et Al. (2000).
AN INTRODUCTION TO SUPPORT VECTOR MACHINES AND OTHER KERNEL-BASED LEARNING METHODS.
Cambridge university press.
(T. Ghandi, M., Lee, D., Mohammad-Noori, M., And Beer, M. A. (2014). ENHANCED REGULATORY SEQUENCE PREDICTION USING GAPPED K-MER FEATURES.
PLoS computational biology, 10(7):e1003711.
國 HAStie, T., Tibshirani, R., AND Friedman, J. (2009).
THE ELEMENTS OF STATISTICAL LEARNING: DATA MINING, INFERENCE, AND PREDICTION.
Springer Science \& Business Media.

