MACHINE LEARNING IN BIOINFORMATICS

FROM LOGISTIC REGRESSION TO SVMsS

Philipp Benner
philipp.benner@bam.de

VP.1 - eScience
Federal Institute of Materials Research and Testing (BAM)

April 25, 2024



LOGISTIC REGRESSION
(CLASSIFICATION)




LINEAR REGRESSION AND CLASSIFICATION

Linear regression
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Logistic regression
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How is the hyperplane defined? What is o?




DEFINING HYPERPLANES

m We use the properties of the dot product to define the
separating hyperplane:

x"8 = |x]| 6] cos £

m For vectors x perpendicular to § we have cos £ = 0
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DEFINING HYPERPLANES

m For hyperplanes with bias b we use x"6 = b
x"0=(xp+%)0

=Xx,0+X"0

> X1




DEFINING HYPERPLANES

B Remember our convention:

1 0,
x() 0,
x=1 .1, 0=1|.
() 6,

m Hence, instead of x'# = b we can write x" 6 = 0, because
91 = *b




SEPARATING HYPERPLANE

m x'6 > 0 : predicting positive class
m x'6 < o : predicting negative class
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LOGISTIC REGRESSION

m We convert x' 4 to probabilities
pr(Y =1|x) = o(x'6)

m The function o denotes the sigmoid function
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LOGISTIC REGRESSION

m Given a training set (X,y) how do we estimate §?

m Option 1: Minimizing squared error (similar to OLS)
n
6 = arg min Z {yi — O'(XITH)}
9 4
1=1
Problem: Not convex!
m Remember how we justified OLS for linear models?

m Option 2: Maximum likelihood

0 = argmaxpr(y | X, 6)
0




LOGISTIC REGRESSION

m What is the probability of (X,y)?

m Remember a Bernoulli experiment (coin flip) with outcomes
H (head) and T (tail)

m H is observed with probability p
m T is observed with probability 1 — p

m The sequence HHTHT has probability
pr(HHTHT) = pp(1— p)p(1 — p)
m Remember the following rule of thumb:
>< — llandll
_|_ — Ilorll




LOGISTIC REGRESSION

m For logistic regression, assume y = (1,1,0, 1), hence
pr(1,1,0,1|X,0) = o(x{ 8)o(x, 6)(1 — O'(X;@))O’(XZ@)

m Write it nicely in general form:

n
pr(y | X,0) = [J o (x7 0)¥(1 — o (x 0))"
i=1
m Maximum likelihood

n
0 = arg maxH o(x0)i(1— a(x] 6))" Vi

0 :
1=1

n
= arg many; log o(x; 0) + (1 — y;) log(1 — o(x] 0))
o 4
1=
m Convex optimization problem, but must be solved
numerically

9]



SUPPORT VECTOR MACHINES
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SUPPORT VECTOR MACHINES

m Support vector machines (SVMs) are similar to logistic
regression, however, their learning algorithm is
geometrically motivated:

m What is the best separating hyperplane?



SUPPORT VECTOR MACHINES

m SVMs take the hyperplane with maximum margin m:
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m Data points touching the margin are called support vectors

m What is m and how can we maximize it?




SUPPORT VECTOR MACHINES

m Computing the margin m given a fixed hyperplane:
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m Hence, the margin is determined by the scalar projection of
xt —x~onto 0/ |0]:
0

161,

m=(x"—x")"




m So far we did not enforce any constraints on 6

m There are infinitely many 6 for the same separating
hyperplane

m We apply the constraint
xHTo=1, (x7)'0=-1
for positive x™ and negative x~ support vectors

m This definition leads to a simplified margin:

0

m=(x"—x"
O =X

SUPPORT VECTOR MACHINES



SUPPORT VECTOR MACHINES

SVM optimization problem

Let (x;,¥;); denote a training set such that y; € {—1,1}. The
parameters of the SVM are estimated as follows:

f = argmin ||0],
0
st X' 0y; >

m Note that minimizing ||6||, is equivalent to maximizing the
margin 2/ /6],

m The solution can be computed using the Lagrangian
n
1
L(8,A) = 3 lIell; = D Ailx oy =)
i=1

m The solution is a saddle point of the Lagrangian L(6, \)




SUPPORT VECTOR MACHINES

SVM dual problem

The solution of the SVM is obtained by maximizing the dual
problem

Q) = min L(6,N)

—ZA —*ZZM/W;

i= 1] 1
subject to \; > o.

m We have a Lagrange multiplier )\; for each data point

m )\ is zero except for support vectors

m The dual problem is solved using the Sequential minimal
optimization (SMO) algorithm [Cristianini et al., 2000]

m The dual representation depends on x,.ij



SUPPORT VECTOR MACHINES

m What if the data is not linearly separable?
Option 1: Slack variables

SVM optimization problem for non-linearly separable data

Let (x;,y;); denote a training set such that y; € {—1,1}. The
parameters of the SVM are estimated as follows:

n
6 = argmin [|6]], +C) &
0 .
1=

st X! 0y > 1§

where C is the slack panelty.

m C = oo : Data must be linearly separated. C = 0 : Ignore data.

m The dual problem is almost identical to the case of linearly
separable data



SUPPORT VECTOR MACHINES - SLACK VARIABLES

m The effect of the slack penalty:
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m C = 0.001: Some misclassified points are almost ignored

m C =100.0 : Get as close as possible to misclassified points




SUPPORT VECTOR MACHINES - FEATURE SPACE

m What if the data is not linearly separable?
Option 2: Feature space

x@ Input space (01 Feature space
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B X; X; measures 5|m|lar|ty In Input space

m ¢(X;) " ¢(x;) measures similarity in feature space
m Dimension of feature space is typically much larger
m Data often becomes linearly separable



SUPPORT VECTOR MACHINES - FEATURE SPACE

u Examp[e: ¢(X(1),X(2)) — (X(1),X(2),X(1)X(1) —I—X(2)X(2))

Feature space

Input space
X(Z) (p(3)
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m Projection of the hyperplane back to input space will result
in a non-linear decision boundary



SUPPORT VECTOR MACHINES - KERNELS

Definition: Kernel function

A function sk : X x X — R is called a Rernel if there exists a
feature map ¢ : X — F such that

k(X %) = o(x;) T o(X;)

K = (#(Xj,X;))x;ex xex is called the kernel matrix.

m X can be an arbitrary space, for instance DNA sequences

m x(Xj, X;) is interpreted as a similarity measure in feature
space

m Evaluating x(X;, X;) does not always require to explicitly
compute ¢(x)

m Not having to map data into feature space is called the
kernel trick




SUPPORT VECTOR MACHINES - RBF KERNEL

m The Gaussian or radial basis function (RBF) kernel:

2
k(xi.) = exp {—”X’ _Xf”z}

202

m Instead of the dot product x,.ij we use the difference x; — x;

as the similarity measure
m What is the corresponding feature map ¢?
m Taylor expansion of the kernel leads to

B X2 1 1, 1 2
d(Xx) = exp <_MZ> [1, \/1!02x, \/2!04x , \/3!06x ,]

m Feature space of the RBF kernel has infinite dimensions




SUPPORT VECTOR MACHINES - k-SPECTRUM KERNEL

m Suppose our input data is DNA sequences or any other type
of strings

m How would we measure the similarity of two strings x; and x;?

m Feature map ¢ of the x-spectrum kernel counts the number
of occurrences of substrings of length «

m Example:

X4 = "statistics"
X, = "computation"
m For k = 3 we get:

aaa aab ... sta ... tat
o o ... 1 ... 1

d(X1) =

B R(X1, %) = ¢(X1) Td(X) =1-14+1-1=2
m We don’t have to compute ¢ explicitly, only count the
common substrings



SUPPORT VECTOR MACHINES - GAPPED k-MERS

m [: word or substring length
m R: number of non-gaps

X;: ... ACG ...

I
50
A*G

X,: ... ATG ...

m Number of gapped x-mers:

(e

m Requires very efficient implementation (e.g. gkmSVM
[Ghandi et al., 2014])




SUPPORT VECTOR MACHINES - SUMMARY

m Support vector machines and logistic regression have
different learning objectives

m SVMs maximize the margin between positive and negative
samples
m Two approaches to deal with non-linearly separable data:
» Slack variables to weaken the separability objectives
» Implicit mapping into high-dimensional feature space with
Kernels
m SVMs and logistic regression have different number of
parameters:
» SVMs: One parameter for each training point
> Logistic regression: One parameter for each feature

m Evaluation of the kernel matrix takes O(n?) steps




SUPPORT VECTOR MACHINES - READING

m Reading: Chapter 12 [Hastie et al., 2009], Section 6.1
[Cristianini et al., 2000]

m Advanced reading: Representer Theorem



REFERENCES

[ CRISTIANINI, N., SHAWE-TAYLOR, J., ET AL. (2000).
AN INTRODUCTION TO SUPPORT VECTOR MACHINES AND OTHER
KERNEL-BASED LEARNING METHODS.
Cambridge university press.

[§ GHANDI, M., LEE, D., MOHAMMAD-NOORI, M., AND BEER, M. A. (2014).
ENHANCED REGULATORY SEQUENCE PREDICTION USING GAPPED K-MER
FEATURES.

PLoS computational biology, 10(7):e1003711.

[§ HASTIE, T,, TIBSHIRANI, R., AND FRIEDMAN, J. (2009).
THE ELEMENTS OF STATISTICAL LEARNING: DATA MINING, INFERENCE, AND
PREDICTION.
Springer Science & Business Media.



	Logistic Regression (Classification)
	Support Vector Machines (SVMs)
	Appendix

