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Logistic Regression
(Classification)



Linear regression and classification

Linear regression

x

y

f(x)

ɛi

Logistic regression

x(1)

x(2)

f(x)

y = Xθ + ϵ , y ∈ R y ?
= σ(Xθ) + ϵ , y ∈ {0, 1}

How is the hyperplane defined? What is σ?
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Defining hyperplanes

We use the properties of the dot product to define the
separating hyperplane:

x⊤θ = ∥x∥ ∥θ∥ cos∡

For vectors x perpendicular to θ we have cos∡ = 0
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x(2)

x θ=0

θ

T
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Defining hyperplanes

For hyperplanes with bias b we use x⊤θ = b

x⊤θ = (xb + x̃)⊤θ
= x⊤b θ︸︷︷︸

=b

+ x̃⊤θ︸︷︷︸
=0

x(1)

x(2)

x θ=b
θ

T
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Defining hyperplanes

Remember our convention:

x =


1
x(2)

...
x(p)

 , θ =


θ1
θ2
...
θp


Hence, instead of x⊤θ = b we can write x⊤θ = 0, because
θ1 = −b
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Separating hyperplane

x⊤θ > 0 : predicting positive class
x⊤θ < 0 : predicting negative class

x(1)

x(2)

x θ=0T

x θ>0T

x θ<0T
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Logistic regression

We convert x⊤θ to probabilities

pr(Y = 1 | x) = σ(x⊤θ)

The function σ denotes the sigmoid function

σ(x) = 1
1 + e−x
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Logistic regression

Given a training set (X, y) how do we estimate θ?

Option 1: Minimizing squared error (similar to OLS)

θ̂ = argmin
θ

n∑
i=1

[
yi − σ(x⊤i θ)

]
Problem: Not convex!

Remember how we justified OLS for linear models?

Option 2: Maximum likelihood

θ̂ = argmax
θ

pr(y | X, θ)
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Logistic regression

What is the probability of (X, y)?

Remember a Bernoulli experiment (coin flip) with outcomes
H (head) and T (tail)

H is observed with probability p

T is observed with probability 1 − p

The sequence HHTHT has probability
pr(HHTHT) = pp(1 − p)p(1 − p)

Remember the following rule of thumb:
× = "and"
+ = "or"
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Logistic regression

For logistic regression, assume y = (1, 1,0, 1), hence

pr(1, 1,0, 1 | X, θ) = σ(x⊤1 θ)σ(x⊤2 θ)(1 − σ(x⊤3 θ))σ(x⊤4 θ)

Write it nicely in general form:

pr(y | X, θ) =
n∏
i=1

σ(x⊤i θ)
yi(1 − σ(x⊤i θ))

1−yi

Maximum likelihood

θ̂ = argmax
θ

n∏
i=1

σ(x⊤i θ)
yi(1 − σ(x⊤i θ))

1−yi

= argmax
θ

n∑
i=1

yi log σ(x⊤i θ) + (1 − yi) log(1 − σ(x⊤i θ))

Convex optimization problem, but must be solved
numerically
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Support Vector Machines
(SVMs)



Support vector machines

Support vector machines (SVMs) are similar to logistic
regression, however, their learning algorithm is
geometrically motivated:

x(1)

x(2)

What is the best separating hyperplane?
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Support vector machines

SVMs take the hyperplane with maximum margin m:

x(1)

x(2)

} m1
2

Data points touching the margin are called support vectors

What is m and how can we maximize it?
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Support vector machines

Computing the margin m given a fixed hyperplane:

x(1)

x(2)

x-

x+

θ

x   x+ --

θ

x   x+ --}
m=(x   x )+ -- θ

||θ||
T

Hence, the margin is determined by the scalar projection of
x+ − x− onto θ/ ∥θ∥:

m = (x+ − x−)⊤ θ

∥θ∥2
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Support vector machines

So far we did not enforce any constraints on θ

There are infinitely many θ for the same separating
hyperplane

We apply the constraint

(x+)⊤θ = 1 , (x−)⊤θ = −1

for positive x+ and negative x− support vectors

This definition leads to a simplified margin:

m = (x+ − x−)⊤ θ

∥θ∥2

=
2

∥θ∥2
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Support vector machines

SVM optimization problem
Let (xi, yi)i denote a training set such that yi ∈ {−1, 1}. The
parameters of the SVM are estimated as follows:

θ̂ = argmin
θ

∥θ∥2

s.t. x⊤i θyi ≥ 1

Note that minimizing ∥θ∥2 is equivalent to maximizing the
margin 2/ ∥θ∥2
The solution can be computed using the Lagrangian

L(θ, λ) = 1
2 ∥θ∥2 −

n∑
i=1

λi(x⊤i θyi − 1)

The solution is a saddle point of the Lagrangian L(θ, λ)
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Support vector machines

SVM dual problem
The solution of the SVM is obtained by maximizing the dual
problem

Q(λ) = min
θ
L(θ, λ)

=
n∑
i=1

λi −
1
2

n∑
i=1

n∑
j=1

λiλjyiyjx⊤i xj

subject to λi ≥ 0.

We have a Lagrange multiplier λi for each data point
λi is zero except for support vectors
The dual problem is solved using the Sequential minimal
optimization (SMO) algorithm [Cristianini et al., 2000]
The dual representation depends on x⊤i xj
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Support vector machines

What if the data is not linearly separable?
Option 1: Slack variables

SVM optimization problem for non-linearly separable data
Let (xi, yi)i denote a training set such that yi ∈ {−1, 1}. The
parameters of the SVM are estimated as follows:

θ̂ = argmin
θ

∥θ∥2 + C
n∑
i=1

ξi

s.t. x⊤i θyi ≥ 1 − ξi

where C is the slack panelty.

C = ∞ : Data must be linearly separated. C = 0 : Ignore data.
The dual problem is almost identical to the case of linearly
separable data
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Support vector machines - Slack variables

The effect of the slack penalty:

x(1)

x(2)

C=0.01

C=100

C = 0.001 : Some misclassified points are almost ignored
C = 100.0 : Get as close as possible to misclassified points
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Support vector machines - Feature space

What if the data is not linearly separable?
Option 2: Feature space

x(1)

x(2) Input space

φ(1)

φ(2) Feature space

φ

x⊤i xj measures similarity in input space
ϕ(xi)⊤ϕ(xj) measures similarity in feature space
Dimension of feature space is typically much larger
Data often becomes linearly separable
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Support vector machines - Feature space

Example: ϕ(x(1), x(2)) = (x(1), x(2), x(1)x(1) + x(2)x(2))

x(1)

x(2)

Input space

φ(1)

φ(3)
Feature space

φ

Projection of the hyperplane back to input space will result
in a non-linear decision boundary
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Support vector machines - Kernels

Definition: Kernel function
A function κ : X × X → R is called a kernel if there exists a
feature map ϕ : X → F such that

κ(xi, xj) = ϕ(xi)⊤ϕ(xj)

K = (κ(xi, xj))xi∈X ,xj∈X is called the kernel matrix.

X can be an arbitrary space, for instance DNA sequences
κ(xi, xj) is interpreted as a similarity measure in feature
space
Evaluating κ(xi, xj) does not always require to explicitly
compute ϕ(x)
Not having to map data into feature space is called the
kernel trick

20 25



Support vector machines - RBF Kernel

The Gaussian or radial basis function (RBF) kernel:

k(xi, xj) = exp

{
−
∥∥xi − xj

∥∥2
2

2σ2

}

Instead of the dot product x⊤i xj we use the difference xi − xj
as the similarity measure
What is the corresponding feature map ϕ?
Taylor expansion of the kernel leads to

ϕ(x) = exp

(
− x2

2σ2

)[
1,
√

1
1!σ2 x,

√
1

2!σ4 x
2,

√
1

3!σ6 x
3, . . .

]

Feature space of the RBF kernel has infinite dimensions
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Support vector machines - κ-spectrum kernel

Suppose our input data is DNA sequences or any other type
of strings
How would we measure the similarity of two strings xi and xj?
Feature map ϕ of the κ-spectrum kernel counts the number
of occurrences of substrings of length κ

Example:

x1 = "statistics"
x2 = "computation"

For κ = 3 we get:

ϕ(x1) =

[
aaa aab . . . sta . . . tat . . .
0 0 . . . 1 . . . 1 . . .

]
k(x1, x2) = ϕ(x1)

⊤ϕ(x2) = 1 · 1 + 1 · 1 = 2
We don’t have to compute ϕ explicitly, only count the
common substrings
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Support vector machines - gapped κ-mers

l: word or substring length
k: number of non-gaps

... ACG ...

... ATG ...

x :1

x :2

AT*

AC* A*G *CG

*TGA*G
match

Number of gapped κ-mers:(
l
κ

)
4κ

Requires very efficient implementation (e.g. gkmSVM
[Ghandi et al., 2014])
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Support vector machines - Summary

Support vector machines and logistic regression have
different learning objectives
SVMs maximize the margin between positive and negative
samples
Two approaches to deal with non-linearly separable data:
▶ Slack variables to weaken the separability objectives
▶ Implicit mapping into high-dimensional feature space with

Kernels
SVMs and logistic regression have different number of
parameters:
▶ SVMs: One parameter for each training point
▶ Logistic regression: One parameter for each feature

Evaluation of the kernel matrix takes O(n2) steps
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Support vector machines - Reading

Reading: Chapter 12 [Hastie et al., 2009], Section 6.1
[Cristianini et al., 2000]
Advanced reading: Representer Theorem
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