
Machine Learning in Bioinformatics
Artificial Neural Networks

Philipp Benner
philipp.benner@bam.de

VP.1 - eScience
Federal Institute of Materials Research and Testing (BAM)

April 25, 2024

Outline

We will discuss a particular class of Artificial Neural
Networks (ANNs) called Multilayer Perceptrons (MLPs)

MLPs are feed-forward networks, i.e. without any loops
(directed acyclic graphs)

We motivate MLPs from logistic regression

1 32

Drawings by Ramon y Cajal (∼ 1900)

2 32

A biological neuron

3 32

Hodgkin-Huxley model
[Hodgkin and Huxley, 1952]

I = Cm
dVm
dt + ḡKn4(Vm − VK) + ḡNam3h(Vm − VNa) + ḡl(Vm − Vl)

dn
dt = αn(Vm)(1 − n)− βn(Vm)n ,

dm
dt = αm(Vm)(1 − m)− βm(Vm)m

dh
dt = αh(Vm)(1 − h)− βh(Vm)h

4 32

First mathematical models
[McCulloch and Pitts, 1943]

5 32

First mathematical models
[McCulloch and Pitts, 1943]

McCulloch-Pitts networks must be designed, i.e. there exists
no training algorithm

6 32

Mathematical models of neural networks

Short and incomplete history of neural network models:

McCulloch-Pitts networks [McCulloch and Pitts, 1943]

The perceptron [Rosenblatt, 1957]

Multilayer perceptrons [Werbos, 1974, McClelland et al., 1986]

Backpropagation algorithm [LeCun et al., 1988]

7 32

AlexNet - The breakthrough

AlexNet [Krizhevsky et al., 2012] is the first neural network
that performs better than traditional feature extraction and
classification methods on images

8 32

From Logistic Regression to ANNs

Logistic regression

We convert x⊤θ to probabilities

pr(Y = 1 | θ) = σ(x⊤θ)

The function σ denotes the sigmoid function

σ(z) = 1
1 + e−z

Visual respresentation of logistic regression:

x(p)

x(1)

x(2)

. . .

y~. . .

θ1

θ2

θp

σ

where x(j) is the j-th value of the input vector x ∈ Rp

9 32

Generalizing logistic regression

x(p)

x(1)

x(2)

. . .

y~. . .

θ1

θ2

θp

σ

Instead of θ we use w for weights. In addition, q refers to the
number of inputs or features, which for neural networks is
much lower than the number of parameters p
We introduce multiple output neurons ỹ1, . . . , ỹk

Weights are compiled into a single weight matrix W ∈ Rp×k

We stack several layers, where each layer ℓ has its own
weight matrix W(ℓ) and activation function σℓ

10 32

Generalizing logistic regression

x(q)

x(1)

x(2)

. . .

y~. . .

w1

w2

wq

σ

Instead of θ we use w for weights. In addition, q refers to the
number of inputs or features, which for neural networks is
much lower than the number of parameters p

We introduce multiple output neurons ỹ1, . . . , ỹk

Weights are compiled into a single weight matrix W ∈ Rp×k

We stack several layers, where each layer ℓ has its own
weight matrix W(ℓ) and activation function σℓ

10 32

Generalizing logistic regression

x(q)

x(1)

x(2)

. . .

. . .

w11

w21

wq1

σ

σ

. . .w1k

w2k

wqk

y~
1

y~
k

Instead of θ we use w for weights. In addition, q refers to the
number of inputs or features, which for neural networks is
much lower than the number of parameters p
We introduce multiple output neurons ỹ1, . . . , ỹk

Weights are compiled into a single weight matrix W ∈ Rp×k

We stack several layers, where each layer ℓ has its own
weight matrix W(ℓ) and activation function σℓ

10 32

Generalizing logistic regression

x(q)

x(1)

x(2)

. . .

. . .

σ

σ

. . .

y~
1

y~
k

W

Instead of θ we use w for weights. In addition, q refers to the
number of inputs or features, which for neural networks is
much lower than the number of parameters p
We introduce multiple output neurons ỹ1, . . . , ỹk

Weights are compiled into a single weight matrix W ∈ Rp×k

We stack several layers, where each layer ℓ has its own
weight matrix W(ℓ) and activation function σℓ

10 32

Generalizing logistic regression

x(q)

x(1)

x(2)

. . .

. . .

W σ

σ

. . .

σ

σ

. . .

σ
y~

(1) W(2) W(3)
1

1

2

2

3

Instead of θ we use w for weights. In addition, q refers to the
number of inputs or features, which for neural networks is
much lower than the number of parameters p
We introduce multiple output neurons ỹ1, . . . , ỹk

Weights are compiled into a single weight matrix W ∈ Rp×k

We stack several layers, where each layer ℓ has its own
weight matrix W(ℓ) and activation function σℓ

10 32

Artificial neural network

x(q)

x(1)

x(2)

. . .

. . .

W σ

σ

. . .

σ

σ

. . .

σ
y~

(1) W(2) W(3)
1

1

2

2

3

Feedforward Artificial Neural Network
A feedforward neural network consists of a variable number of
layers. Each layer ℓ has its own weight matrix W(ℓ) ∈ Rkℓ×kℓ+1 ,
where kℓ denotes the number of nodes within layer ℓ. The input
layer has weight matrix W(1) ∈ Rk1×k2 , where q = k1 is the
dimension of the input data. The activation function σℓ is a
layer-specific function and applied independently to each node.

11 32

Artificial neural network - Notation

Let X = X(1) ∈ Rn×q denote a data matrix with n samples or
observations, each of dimension q

The output of the ℓ-th layer of a neural network is denoted

X(ℓ+1) = σℓ(X(ℓ)W(ℓ))

The activation function σℓ is applied to each cell of the
matrix X(ℓ)W(ℓ)

The prediction ỹ of a neural network with L layers is the
output X(L+1) of the last layer

Deep neural networks have a large number of layers L

12 32

Activation functions

Linear functions σ(x) = ax + b are not very useful, except for
output neurons1

Traditionally there were mainly two activation functions:

−10 −5 0 5 10
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Sigmoid: σ(x) = 1
1+e−x

−10 −5 0 5 10
x

−1.0

−0.5

0.0

0.5

1.0

y

Tanh: σ(x) = 1− 2
1+e2x

Rectifier linear units (ReLU) [Glorot et al., 2011] and Softplus
show better performance for training deep neural networks

−10 −5 0 5 10
x

0

2

4

6

8

10

y

ReLU: σ(x) = max(x, 0)

−10 −5 0 5 10
x

0

2

4

6

8

10
y

Softplus: σ(x) = log(1 + ex)

1Stacking of linear functions results in a linear function
13 32

Activation functions

Especially important is the activation function of the output
layer

Classification:
▶ For binary classification problems we use one output node

with sigmoid activation

▶ The softmax activation σ : Rk → (0, 1)k is used for multiclass
problems

σ(x)i =
exi∑k
j=1 exj

▶ The output of the softmax is interpreted as class probabilities

Regression:
▶ In most cases simply the identity function σ(x) = x

▶ ReLU can be used for only positive targets
14 32

Architectures

How do we choose the architecture? How many hidden
layers? How many neurons in each layer?

Neural networks with one hidden layer and an abritrary
amount of neurons are universal approximators
[Hornik et al., 1989]

Deep neural networks seem to perform better in practice
than shallow networks with many neurons

Each application domain has its own Architectures

▶ Image processing: convolutional neural networks (CNNs)

▶ Materials: Graph neural networks

▶ Machine translation: transformers / attention

15 32

ANN interpretation

x(q)

x(1)

x(2)

. . .

. . .

W σ

σ

. . .

σ

σ

. . .

σ
y~

(1) W(2) W(3)
1

1

2

2

3}
feature map φ

}
linear/logistic

regression

16 32

Training ANNs

Training ANNs

Similar to logistic regression, the weights of ANNs are
computed using gradient descent

Gradient descent is an iterative algorithm to minimize a
given loss function LW, i.e.

Ŵ = argmin
w

LW(X, y)

where (X, y) denotes the training data and
W = (W(1),W(2), . . . ,W(L)) the weights of the neural network

Logistic regression uses the negative log-likelihood as loss
function

What loss functions do we use for neural networks?

17 32

Training ANNs - Loss functions

Let fW denote the neural network with weights W and (X, y) a
training data set

Regression:

▶ Mean squared error (similar to OLS):

LW =
1
n ∥y − fW(X)∥2

2

▶ Mean absolute error:

LW =
1
n ∥y − fW(X)∥1

Useful when targets y contain outliers

18 32

Training ANNs - Loss functions

Classification:

▶ Binary cross-entropy (yi ∈ {0, 1}):

LW = − 1
n

n∑
i=1

yi log(fW(xi)) + (1 − yi) log(1 − fW(xi))

Equivalent to maximum likelihood of logistic regression

▶ Multiclass cross-entropy with k classes (yi ∈ {0, 1}k):

LW = − 1
n

n∑
i=1

k∑
j=1

yi,j log(fW(xi)j) = − 1
n

n∑
i=1

y⊤
i log(fW(xi))

where yi,j is 1 if the i-th sample belongs to class j and fW(xi)j
denotes the output of the j-th node of the last layer of the
neural network fW

The loss function is typically not convex!
19 32

Training ANNs - Gradient descent

Gradient descent
Gradient descent updates the weights at each iteration t
according to the following update rule:

Wt+1 = Wt − γ∇WtLWt(X, y)

where γ is a parameter that determines the step size

W

Loss

gradient
negative

W

W

}one iteration

local optimum

global optimum

t

t+1

The larger γ the more likely the algorithm jumps over local
optima, but the higher the chance of divergence

20 32

Training ANNs - Stochastic gradient descent

Stochastic gradient descent (SGD)
Stochastic gradient descent (SGD) selects at each iteration t a
single training sample (xt, yt) with t ∈ {1, . . . ,n} at random and
updates the weights based on this one sample:

Wt+1 = Wt − γ∇WtLWt(xt, yt)

The stochastic nature of SGD can help to bypass local
optima [Masters and Luschi, 2018]
SGD is slow, because we have to update weights for each
sample and cannot utilize parallel computation

21 32

Training ANNs - Stochastic gradient descent

Mini-batch SGD
Mini-batch SGD selects at each iteration t a random subset
(Xt, yt) of m samples Xt = (xt1 , . . . , xtm), yt = (yt1 , . . . , ytm) with
tk ∈ {1, . . . ,n} and updates the weights accordingly:

Wt+1 = Wt − γ∇WtLWt(Xt, yt)

(Xt, yt) is called a mini-batch and m controls the mini-batch size

Practice has shown that (mini-batch) SGD seems to improve
generalization [Hoffer et al., 2017]
We typically select m = 32 or m = 64

22 32

Training ANNs - SGD with momentum

Gradient descent with momentum
The update rule of gradient descent with momentum is

Mt+1 = βMt +∇WtLWt(Xt, yt)

Wt+1 = Wt − γMt+1

where γ is the usual step size and β determines the weight of
previous updates

For β = 0 we obtain vanilla gradient descent
Intuitive explanation: The mass of a stone rolling downhill
adds momentum
In some cases gradient descent with momentum can help to
jump out of local optima
It makes SGD or mini-batch SGD more stable

23 32

Training ANNs - Gradient descent

W

Loss
W W

plateau

global optimum

t t+1}
Gradient descent converges slowly when being stuck on
plateaus
The gradient itself is not very informative
Some gradient descent methods only use the sign of the
gradient (i.e. Rprop [Riedmiller and Braun, 1992])
Rprop does not work for mini-batches

24 32

Training ANNs - RMSProp

Root Mean Square Propagation (RMSProp)
RMSProp uses the following update rule:

Vt+1 = βVt + (1 − β) (∇WtLWt(Xt, yt))
2

Wt+1 = Wt −
γ√
Vt+1

∇WtLWt(Xt, yt)

where γ denotes the step size and β decay rate for averaging
over previous gradients

For β = 0 we obtain

Wt+1 = Wt −
γ

|∇WtLWt(Xt, yt)|
∇WtLWt(Xt, yt)

i.e. we only consider the sign of the gradient
25 32

Training ANNs - Adam

Adaptive Moment Estimation (Adam)
Adam uses the following update rule:

Mt+1 = β1Mt + (1 − β1)∇WtLWt(Xt, yt) | momentum
Vt+1 = β2Vt + (1 − β2)∇WtLWt(Xt, yt)

2 | adaptive γ

M̂t+1 = Mt+1/(1 − βt+1
1) , V̂t+1 = Vt+1/(1 − βt+1

2) | bias correction

Wt+1 = Wt −
γ√

V̂t+1 + ϵ
M̂t+1

where γ denotes the step size and β decay rate for averaging
over previous gradients

M0 = 0 and V0 = 0, hence early estimates are biased
towards zero, M̂ and V̂ correct this bias

26 32

Training ANNs - Adam

Adaptive Moment Estimation (Adam)
Adam uses the following update rule:

Mt+1 = β1Mt + (1 − β1)∇WtLWt(Xt, yt) | momentum
Vt+1 = β2Vt + (1 − β2)∇WtLWt(Xt, yt)

2 | adaptive γ

M̂t+1 = Mt+1/(1 − βt+1
1) , V̂t+1 = Vt+1/(1 − βt+1

2) | bias correction

Wt+1 = Wt −
γ√

V̂t+1 + ϵ
M̂t+1

where γ denotes the step size and β decay rate for averaging
over previous gradients

Adam is the default for training neural networks
RMSProp with bias-correction and momentum

26 32

Vanishing and exploding gradient problem

Suppose we want the gradient of the first weight matrix of a
neural network with L layers

The derivative of the first weight matrix is defined by the
chain rule:

∂

∂W(1)LW(X, y) =
∂LW
∂ŷ

∂ŷ
∂X(L)

∂X(L)

∂X(L−1) . . .
∂X(2)

∂W(1) (X, y)

We use the partial derivative ∂/∂W(1) to denote that all other
weight matrices

W(2),W(3), . . . ,W(L)

are treated as constants at their current values

In deep neural networks, the gradient of the first layers will
behave very differently than the gradient of the last layers

27 32

Vanishing and exploding gradient problem

In deep neural networks, the gradient of the first layers will
behave very differently than the gradient of the last layers

For the first layers, the gradient easily vanishes or explodes

Strategies to counter this problem

▶ Normalization of training data

▶ Proper weight initialization

▶ Activation functions such as ReLU

▶ Normalization of layer outputs X(ℓ) (batch normalization)

▶ Skip connections: X(ℓ+1) = σℓ(X(ℓ)W(ℓ)) + X(ℓ)

28 32

Vanishing and exploding gradient problem

Sigmoid and Tanh activations cause vanishing gradients:

−10 −5 0 5 10
0.0

0.5

1.0

y

Sigmoid

−10 −5 0 5 10
0

5

10

y

ReLU

−10 −5 0 5 10
x

0.0

0.1

0.2

y

Derivative of Sigmoid

−10 −5 0 5 10
x

0.0

0.5

1.0

y

Derivative of ReLU

ReLU is less prone to vanishing gradients
ReLU often leads to inactive nodes during training (zero
gradient)
LeakyReLU is often used instead

29 32

Training ANNs - Remarks

How do we compute the gradient for training neural
networks?
Backpropagation algorithm for neural networks
Libraries such as Tensorflow or PyTorch use automatic
differentiation (AD)
With AD it is possible to compute the gradient of arbitrary
functions, including neural networks
Developing deep neural networks requires much testing
(watch the gradient!)
▶ Weights must stay within a reasonable range
▶ Training data must be normalized
▶ Local optima must be bypassed using SGD
▶ Overfitting must be prevented

30 32

Training ANNs - Remarks

Early stopping prevents overfitting
We use a small portion of the training data for validation

training epochs

training error

validation error

early stopping

31 32

Training ANNs - Remarks

Statistics:
▶ Define the optimization problem (e.g. maximum likelihood)
▶ Use explicit regularization, especially for overparameterized

models
▶ Check that there is a unique solution
▶ Develop numerical methods for finding the solution

Modern machine learning:
▶ Define the optimization problem (e.g. minimize MSE) using an

overparameterized model
▶ Use a variety of tricks to compute solutions that generalize

well
▶ The gradient method itself is considered a method for

regularization

32 / 32

References I

Glorot, X., Bordes, A., and Bengio, Y. (2011).
Deep sparse rectifier neural networks.
In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 315–323. JMLR Workshop
and Conference Proceedings.

Hodgkin, A. L. and Huxley, A. F. (1952).
A quantitative description of membrane current and its
application to conduction and excitation in nerve.
The Journal of physiology, 117(4):500.

Hoffer, E., Hubara, I., and Soudry, D. (2017).
Train longer, generalize better: closing the generalization gap
in large batch training of neural networks.
Advances in neural information processing systems, 30.

Hornik, K., Stinchcombe, M., and White, H. (1989).
Multilayer feedforward networks are universal approximators.
Neural networks, 2(5):359–366.

References II

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neural
networks.
Advances in neural information processing systems, 25.

LeCun, Y., Touresky, D., Hinton, G., and Sejnowski, T. (1988).
A theoretical framework for back-propagation.
In Proceedings of the 1988 connectionist models summer school,
volume 1, pages 21–28.

Masters, D. and Luschi, C. (2018).
Revisiting small batch training for deep neural networks.
arXiv preprint arXiv:1804.07612.

McClelland, J. L., Rumelhart, D. E., and Hinton, G. E. (1986).
The appeal of parallel distributed processing.
MIT Press, Cambridge MA, pages 3–44.

References III

McCulloch, W. S. and Pitts, W. (1943).
A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115–133.

Riedmiller, M. and Braun, H. (1992).
Rprop - a fast adaptive learning algorithm.
In Proc. of ISCIS VII), Universitat. Citeseer.

Rosenblatt, F. (1957).
The perceptron, a perceiving and recognizing automaton Project
Para.
Cornell Aeronautical Laboratory.

Werbos, P. (1974).
Beyond regression:" new tools for prediction and analysis in
the behavioral sciences.
Ph. D. dissertation, Harvard University.

	From Logistic Regression to ANNs
	Training ANNs
	Appendix

