MACHINE LEARNING IN BIOINFORMATICS

ARTIFICIAL NEURAL NETWORKS

Philipp Benner
philipp.benner@bam.de

VP.1 - eScience
Federal Institute of Materials Research and Testing (BAM)

April 25, 2024

OUTLINE

m We will discuss a particular class of Artificial Neural
Networks (ANNs) called Multilayer Perceptrons (MLPs)

m MLPs are feed-forward networks, i.e. without any loops
(directed acyclic graphs)

m We motivate MLPs from logistic regression

DRAWINGS BY RAMON Y CAJAL (N 1900)

7»;24044, 40‘»@& ey
L o

A BIOLOGICAL NEURON

Dendrites

HODGKIN-HUXLEY MODEL

[HODGKIN AND HUXLEY, 1952]

dVy, _ _
I = Cmn—2 + gxn*(Vim — Vi) + Gnam*h(Vim — Vivg) + Gi(Vim — V)

dt
O = an(Vm)(1 = 1)~ BaV)1, S = i (Vim)(1 —) — (V)
dh
9 V)1 =) = (Vi)
L B

FIRST MATHEMATICAL MODELS
[McCULLOCH AND PITTS, 1943]

FIRST MATHEMATICAL MODELS

[McCULLOCH AND PITTS, 1943]

XOR(Tl Tz)

» combining several McCullogh/Pitts ° y=
(z1 A=) V (g A p):

neurons, we can build more
complex boolean functions, e.g.:

o y=x V(e Axy): T1 —>

" \ﬂ@\ >< @—w

@ —y Ty —>
\ 4
T3~ » Theorem: Networks of

McCullogh/Pitts neurons can
realize all boolean functions

m McCulloch-Pitts networks must be designed, i.e. there exists
no training algorithm

6

MATHEMATICAL MODELS OF NEURAL NETWORKS

Short and incomplete history of neural network models:

m McCulloch-Pitts networks [McCulloch and Pitts, 1943]
m The perceptron [Rosenblatt, 1957]
m Multilayer perceptrons [Werbos, 1974, McClelland et al., 1986]

m Backpropagation algorithm [LeCun et al., 1988]

ALEXNET - THE BREAKTHROUGH

30
25F
20

Is 153 T-S: Trimps-Soushen (Ensemble Deep Learning)

ImageNet Top-5 Error

NEC-UIUC

2010 2011 2012 2013 2014 2014 2015 2016 2017

m AlexNet [Krizhevsky et al., 2012] is the first neural network
that performs better than traditional feature extraction and
classification methods on images

FROM LOGISTIC REGRESSION TO ANNS

LOGISTIC REGRESSION

m We convert x4 to probabilities
pr(Y = 1]6) = o(x"0)
m The function o denotes the sigmoid function
(2)

m Visual respresentation of logistic regression:

1
C1+e2

where xU) is the j-th value of the input vector x € RP

9

GENERALIZING LOGISTIC REGRESSION

GENERALIZING LOGISTIC REGRESSION

m Instead of § we use w for weights. In addition, g refers to the
number of inputs or features, which for neural networks is
much lower than the number of parameters p

GENERALIZING LOGISTIC REGRESSION

m Instead of § we use w for weights. In addition, g refers to the
number of inputs or features, which for neural networks is
much lower than the number of parameters p

m We introduce multiple output neurons y,, ...,V

GENERALIZING LOGISTIC REGRESSION

m Instead of § we use w for weights. In addition, g refers to the
number of inputs or features, which for neural networks is
much lower than the number of parameters p

m We introduce multiple output neurons y,, ...,V
m Weights are compiled into a single weight matrix W € RP*k

GENERALIZING LOGISTIC REGRESSION

m Instead of § we use w for weights. In addition, g refers to the
number of inputs or features, which for neural networks is
much lower than the number of parameters p

m We introduce multiple output neurons y,, ...,V
m Weights are compiled into a single weight matrix W € RP*k

m We stack several layers, where each layer ¢ has its own
weight matrix W() and activation function o,

ARTIFICIAL NEURAL NETWORK

Feedforward Artificial Neural Network

A feedforward neural network consists of a variable number of
layers. Each layer ¢ has its own weight matrix W) ¢ Rkexke)
where k, denotes the number of nodes within layer ¢. The input
layer has weight matrix W(") e RF*% where g = k; is the
dimension of the input data. The activation function oy is a
layer-specific function and applied independently to each node.

ARTIFICIAL NEURAL NETWORK - NOTATION

m Let X = X(W € R"*9 denote a data matrix with n samples or
observations, each of dimension g

m The output of the ¢-th layer of a neural network is denoted
X+ — Je(x(ﬂ) W(ﬁ))

m The activation function oy is applied to each cell of the
matrix X(O W)

m The prediction ¥ of a neural network with L layers is the
output X(t+7 of the last layer

m Deep neural networks have a large number of layers L

ACTIVATION FUNCTIONS

m Linear functions o(x) = ax + b are not very useful, except for
output neurons’

m Traditionally there were mainly two activation functions:

Sigmoid: () = s Tanh: o(x) = 1 - 125

m Rectifier linear units (ReLU) [Glorot et al., 2011] and Softplus
show better performance for training deep neural networks

ReLU: o Softplus: () = log(1 + ¢

'Stacking of linear functions results in a linear function

ACTIVATION FUNCTIONS

m Especially important is the activation function of the output
layer

m Classification:

» For binary classification problems we use one output node
with sigmoid activation

» The softmax activation o : R — (0, 1) is used for multiclass

problems
efi

CShe

» The output of the softmax is interpreted as class probabilities

o(x)i

m Regression:
» In most cases simply the identity function o(x) = x

> RelLU can be used for only positive targets

ARCHITECTURES

m How do we choose the architecture? How many hidden
layers? How many neurons in each layer?

m Neural networks with one hidden layer and an abritrary
amount of neurons are universal approximators
[Hornik et al., 1989]

m Deep neural networks seem to perform better in practice
than shallow networks with many neurons

m Each application domain has its own Architectures
> Image processing: convolutional neural networks (CNNs)

> Materials: Graph neural networks

» Machine translation: transformers / attention

ANN INTERPRETATION

w3
2
. o2
& ©-y
- —-
feature map ¢ linear/logistic
regression

TRAINING ANNS

TRAINING ANNS

m Similar to logistic regression, the weights of ANNs are
computed using gradient descent

m Gradient descent is an iterative algorithm to minimize a
given loss function Ly, i.e.

~

W = argmin Ly(X,y)
w

where (X,y) denotes the training data and
W= W wR _ Wwh)the weights of the neural network

m Logistic regression uses the negative log-likelihood as loss
function

m What loss functions do we use for neural networks?

TRAINING ANNS - LOSS FUNCTIONS

m Let fy denote the neural network with weights W and (X, y) a
training data set

m Regression:
> Mean squared error (similar to OLS):
1 2
Lw =~ ly — fuI3
» Mean absolute error:
1
Lw=—lly — fu0),

Useful when targets y contain outliers

TRAINING ANNS - LOSS FUNCTIONS

m Classification:

» Binary cross-entropy (y; € {0,1}):
w= =7 D Yilog(fw(x)) + (1~ ¥:)log(1 ()

Equivalent to maximum likelihood of logistic regression

> Multiclass cross-entropy with k classes (y; € {0, 1}F):

£W Zzylﬂogfw Xr —7723/, lngW Xl))

i=1 j=1

where y; ; is 1if the i-th sample belongs to class j and fw(x;);
denotes the output of the j-th node of the last layer of the
neural network fy

m The loss function is typically not convex!

TRAINING ANNS - GRADIENT DESCENT

Gradient descent

Gradient descent updates the weights at each iteration t
according to the following update rule:

Wi = We — vV, Lw, (X, Y)

where ~ is a parameter that determines the step size

Loss

one iteration
—_—
We
negative Werr
gradient
local optimum

m The larger v the more likely the algorithm jumps over local
optima, but the higher the chance of divergence

global optimum w

TRAINING ANNS - STOCHASTIC GRADIENT DESCENT

Stochastic gradient descent (SGD)

Stochastic gradient descent (SGD) selects at each iteration t a
single training sample (x¢,y:) with t € {1,...,n} at random and
updates the weights based on this one sample:

Wipr = W — vV, Lw, (X, Vi)

m The stochastic nature of SGD can help to bypass local
optima [Masters and Luschi, 2018]

m SGD is slow, because we have to update weights for each
sample and cannot utilize parallel computation

TRAINING ANNS - STOCHASTIC GRADIENT DESCENT

Mini-batch SGD

Mini-batch SGD selects at each iteration t a random subset

(Xt,yt) of m samples X¢ = (Xt,, - - - Xty)y Ve = (Vty» - - - » Yt) With
t, € {1,...,n} and updates the weights accordingly:

Wiia = W — vV, L, (Xt, Vi)
(Xt,yt) is called a mini-batch and m controls the mini-batch size

m Practice has shown that (mini-batch) SGD seems to improve
generalization [Hoffer et al., 2017]

m We typically select m =32 or m = 64

TRAINING ANNS - SGD WITH MOMENTUM

Gradient descent with momentum

The update rule of gradient descent with momentum is

Mipr = My + Vi, Lw, (Xt Vt)
Wiiq = We — yMeyq

where ~ is the usual step size and 3 determines the weight of
previous updates

m For 3 = 0 we obtain vanilla gradient descent

m Intuitive explanation: The mass of a stone rolling downhill
adds momentum

m In some cases gradient descent with momentum can help to
jump out of local optima

m It makes SGD or mini-batch SGD more stable

TRAINING ANNS - GRADIENT DESCENT

Loss
Wi Wit
>

-———
plateau

global optimum W

m Gradient descent converges slowly when being stuck on
plateaus

m The gradient itself is not very informative

m Some gradient descent methods only use the sign of the
gradient (i.e. Rprop [Riedmiller and Braun, 1992])

m Rprop does not work for mini-batches

TRAINING ANNS - RMSPROP

Root Mean Square Propagation (RMSProp)

RMSProp uses the following update rule:

Vier = Ve +(1—5) (VWtEWt(Xt;Yt))Z

Wipq = Wy — vatﬁwt(xtyyt)
Vit

where v denotes the step size and 3 decay rate for averaging
over previous gradients

m For 3 = 0 we obtain

v

Weir = Wy —
o ‘ \Vw, Lw, (Xt, yt)|

Vw, Lw,(Xt, Yt)

i.e. we only consider the sign of the gradient

TRAINING ANNS - ADAM

Adaptive Moment Estimation (Adam)

Adam uses the following update rule:

Miya = BaMe + (1= B1) Vi, Lw, (Xt Vi) | momentum
Vier = BaVe + (1 — B2) Vi Lw, (Xe, Yt)? | adaptive v
Meypqr = Meq/(1— BEYY, Vewq = Ver /(1 — B5FY) | bias correction

Wiiq = Wt — Me+

b
\/ ‘A/t+1 + €
where + denotes the step size and 3 decay rate for averaging
over previous gradients

m M, = 0 and V, = 0, hence early estimates are biased
towards zero, M and V correct this bias

TRAINING ANNS - ADAM

Adaptive Moment Estimation (Adam)

Adam uses the following update rule:

Mt = BaMt + (1 = B1) Vi, Lw, (Xt, Vi) | momentum
Vigr = BaVe + (1 — B2) Vi Lw, (Xt, y1)? | adaptive v
Meyq = Mepa /(1= BEY) . Viq = Vegr /(1 — B5T") | bias correction
Wisq = Wy — ———— My

where ~ denotes the step size and 3 decay rate for averaging
over previous gradients
m Adam is the default for training neural networks

m RMSProp with bias-correction and momentum

VANISHING AND EXPLODING GRADIENT PROBLEM

m Suppose we want the gradient of the first weight matrix of a
neural network with L layers

m The derivative of the first weight matrix is defined by the

chain rule:
9 oLy 9y ox o9x@

m We use the partial derivative 9/0W(") to denote that all other
weight matrices
w® we . wh

are treated as constants at their current values

m In deep neural networks, the gradient of the first layers will
behave very differently than the gradient of the last layers

VANISHING AND EXPLODING GRADIENT PROBLEM

m In deep neural networks, the gradient of the first layers will
behave very differently than the gradient of the last layers

m For the first layers, the gradient easily vanishes or explodes
m Strategies to counter this problem

» Normalization of training data

> Proper weight initialization

» Activation functions such as ReLU

» Normalization of layer outputs X(*) (batch normalization)

> Skip connections: X(“t1) = g,(X(OW®)) 4 x(©)

VANISHING AND EXPLODING GRADIENT PROBLEM

m Sigmoid and Tanh activations cause vanishing gradients:

Sigmoid

ReLU
10 10
>05 J—/ > 5 J
0.0 0
-10 =5 0 3 10 -10 -5] 5

Derivative of Sigmoid Derivative of ReLU
1.0
0.2
0.0 0.0
: !

m RelU is less prone to vanishing gradients

m RelU often leads to inactive nodes during training (zero
gradient)

m LeakyRelLU is often used instead

TRAINING ANNS - REMARKS

m How do we compute the gradient for training neural
networks?

m Backpropagation algorithm for neural networks

m Libraries such as Tensorflow or PyTorch use automatic
differentiation (AD)

m With AD it is possible to compute the gradient of arbitrary
functions, including neural networks

m Developing deep neural networks requires much testing
(watch the gradient!)
» Weights must stay within a reasonable range
» Training data must be normalized
» Local optima must be bypassed using SGD
> Overfitting must be prevented

TRAINING ANNS - REMARKS

m Early stopping prevents overfitting

m We use a small portion of the training data for validation

validation error

training error

>

early stopping L.
training epochs

TRAINING ANNS - REMARKS

m Statistics:

» Define the optimization problem (e.g. maximum likelihood)

» Use explicit regularization, especially for overparameterized
models

» Check that there is a unique solution
» Develop numerical methods for finding the solution
m Modern machine learning:
» Define the optimization problem (e.g. minimize MSE) using an
overparameterized model

» Use a variety of tricks to compute solutions that generalize
well

> The gradient method itself is considered a method for
regularization

REFERENCES |

[3 GLOROT, X., BORDES, A., AND BENGIO, Y. (2011).
DEEP SPARSE RECTIFIER NEURAL NETWORKS.
In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 315-323. JMLR Workshop
and Conference Proceedings.

[§ HODGKIN, A. L. AND HUXLEY, A. F. (1952).
A QUANTITATIVE DESCRIPTION OF MEMBRANE CURRENT AND ITS
APPLICATION TO CONDUCTION AND EXCITATION IN NERVE.
The Journal of physiology, 117(4):500.

[§ HOFFER, E., HUBARA, |., AND SOUDRY, D. (2017).
TRAIN LONGER, GENERALIZE BETTER: CLOSING THE GENERALIZATION GAP
IN LARGE BATCH TRAINING OF NEURAL NETWORKS.
Advances in neural information processing systems, 30.

[3 HORNIK, K., STINCHCOMBE, M., AND WHITE, H. (1989).
MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS.
Neural networks, 2(5):359-366.

REFERENCES Il

[§ KRIZHEVSKY, A., SUTSKEVER, |., AND HINTON, G. E. (2012).
IMAGENET CLASSIFICATION WITH DEEP CONVOLUTIONAL NEURAL
NETWORKS.

Advances in neural information processing systems, 25.

[§ LECUN, Y., TOURESKY, D., HINTON, G., AND SEJNOWSKI, T. (1988).
A THEORETICAL FRAMEWORK FOR BACK-PROPAGATION.
In Proceedings of the 1988 connectionist models summer school,
volume 1, pages 21-28.

[3 MASTERS, D. AND LUSCHI, C. (2018).
REVISITING SMALL BATCH TRAINING FOR DEEP NEURAL NETWORKS.
arXiv preprint arXiv:1804.07612.

[§ MCCLELLAND, J. L., RUMELHART, D. E., AND HINTON, G. E. (1986).
THE APPEAL OF PARALLEL DISTRIBUTED PROCESSING.
MIT Press, Cambridge MA, pages 3-44.

REFERENCES III

[§ McCuLLocH, W. S. AND PITTS, W. (1943).
A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY.
The bulletin of mathematical biophysics, 5(4):115-133.

[§ RIEDMILLER, M. AND BRAUN, H. (1992).
RPROP - A FAST ADAPTIVE LEARNING ALGORITHM.
In Proc. of ISCIS VII), Universitat. Citeseer.

[§ ROSENBLATT, F. (1957).
THE PERCEPTRON, A PERCEIVING AND RECOGNIZING AUTOMATON PROJECT
PARA.
Cornell Aeronautical Laboratory.

[3 WERBOS, P. (1974).
BEYOND REGRESSION:" NEW TOOLS FOR PREDICTION AND ANALYSIS IN
THE BEHAVIORAL SCIENCES.
Ph. D. dissertation, Harvard University.

	From Logistic Regression to ANNs
	Training ANNs
	Appendix

