
Machine Learning in Bioinformatics
ANN Architectures

Philipp Benner
philipp.benner@bam.de

VP.1 - eScience
Federal Institute of Materials Research and Testing (BAM)

April 25, 2024

Outline

Part of this lecture:

▶ Embeddings

▶ Auto-encoders

▶ Convolutions on images and graphs

▶ Attention mechanism

Other important architectures not covered here:

▶ Generative adversarial networks (GANs)

▶ Deep tensor factorization

▶ Recurrent neural networks (LSTM/GRU)

1 33

Embeddings

One-hot encoding

Assume we want to work with categorical data, e.g.

▶ DNA or protein sequences

▶ Text (vectors of words)

Traditionally, we would use one-hot encoding, which use a
dimension for each category

For example, a DNA sequence ACGTTA could be represented
as

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1
1 0 0 0

2 33

One-hot encoding

One-hot encodings have several problems

For data with many categories, we obtain very
high-dimensional feature vectors, e.g.

▶ Protein sequences would already require 20 dimensions

▶ Text would require one dimension per word type

One-hot encodings should be used for purely categorical
data, where we have no similarity between categories

However, for most data we have certain similarities, e.g.

▶ Amino acid replacements have different effects, which
suggests that some amino acids are more similar in function
than others

3 33

Embeddings

Pizza
Pasta

Mozzarella Cat

Dog

Mouse

Table

ChairSeat

Lamp

x(1)

x(2)

We assign each category k a feature vector xk ∈ Rp

The representations xk are randomly initialized and
optimized during training

After training we often observe that similar categories
cluster together

4 33

Convolutional Neural Networks
for Images

Image pattern detection

Conway’s Game of Life - glider gun:

5 33

Image pattern detection

Glider gun detector:

Glider pattern:

6 33

Image pattern detection

Glider gun detector:

6 33

Image pattern detection

Glider gun detector:

1

6 33

Image pattern detection

Glider gun detector:

1

6 33

Image pattern detection

Glider gun detector:

1 3

6 33

Image pattern detection

Glider gun detector:

1 3

6 33

Image pattern detection

Glider gun detector:

1 3 3

6 33

Image pattern detection

Glider gun detector:

1 3 3 1 0 0

6 33

Image pattern detection

Glider gun detector:

1 3 3 1 0 0 0 1 1 1 1

6 33

Image pattern detection

Glider gun detector:

1 3 3 1 0 0 0 1 1 1 1
2

6 33

Image pattern detection

Glider gun detector:

1 3 3 1 0 0 0 1 1 1 1
2 1 1 0 0 0 0 1 2 5

6 33

Image pattern detection

Glider gun detector:

1 3 3 1 0 0 0 1 1 1 1
2 1 1 0 0 0 0 1 2 5 2

6 33

Image pattern detection

Glider gun detector:

1 3 3 1 0 0 0 1 1 1 1
2 1 1 0 0 0 0 1 2 5 2
0 1 1 0 0 0 0 1 1 1 1

6 33

Image pattern detection

1 3 3 1 0 0 0 1 1 1 1
2 1 1 0 0 0 0 1 2 5 2
0 1 1 0 0 0 0 1 1 1 1

1 5 1 1 0 0 0 0 1 1 2
1 2 1 1 0 0 0 1 3 3 1
1 1 0 0 0 0 0 1 1 3 1

7 33

Image pattern detection - Convolution

x2 w1
~

Let x̃j ∈ Rr denote the j-th image patch of image X, e.g.

x̃2 = (0,0,0,0,0, 0,0,0, 1,0, 0, 1,0, 1,0, . . .)⊤

Let wk ∈ Rr denote the k-th glider pattern or kernel, e.g.
w1 = (0,0,0,0,0, 0,0, 1,0,0, 0,0,0, 1,0, . . .)⊤

The output yj at position j is given by

yj = x̃⊤j wk

8 33

Image pattern detection - Convolution

Let X̃ ∈ Rq×r denote the matrix of q image patches from
image X and W ∈ Rr×p the matrix of kernels, i.e.

X̃ =

x̃⊤1
x̃⊤2
...
x̃⊤q

 , W = [w1,w2, . . . ,wp]

The result Y ∈ Rq×p of applying the kernel matrix W to image
X is given by

Y = X̃W = X ∗W

where ” ∗ ” is called convolution1

1Technically, we are computing a cross-correlation and not a convolution
9 33

Equivariance

Let X be an image and W a filter

φ(X) = X ∗W denotes a convolution with W

τ(X) is a translation of an image

The following diagram shows that φ is equivariant with
respect to τ

X Y

X′ Y′

φ

τ τ

φ

Exception are the borders of images

10 33

Why equivariance and not invariance?

11 33

Image pattern detection

1 3 3 1 0 0 0 1 1 1 1
2 1 1 0 0 0 0 1 2 5 2
0 1 1 0 0 0 0 1 1 1 1

1 5 1 1 0 0 0 0 1 1 2
1 2 1 1 0 0 0 1 3 3 1
1 1 0 0 0 0 0 1 1 3 1

?

Stack multiple
convolutions

Case 1: All images have
the same dimension

⇒ Feed into neural network

Case 2: Images have
variable dimension

⇒ Compute summary
statistics (global
pooling)
▶ mean
▶ max

12 33

Pooling layers

Applying kernels leads to translation-equivariant features

Pooling layers add (limited amount of) translation invariance

Average pooling

Max pooling

1 3 3 1 1 0 0 1 1 2 1
2 1 1 0 0 2 1 1 2 5 2
0 1 1 0 3 3 0 1 6 1 1
1 5 1 1 0 3 1 0 1 6 2
1 2 1 1 2 4 0 1 3 2 1
1 1 0 0 3 0 1 1 1 3 1

3 3 6
1

5 4 3
0

0 1 10

13 33

Graph Convolutional Neural
Networks (GCNNs)

Graph data

14 33

Graph convolutions

Convolutions are not only restricted to image and
time-series data

Graph convolutions are used to model the interaction
between nodes

Let G = (N, E) denote a graph with nodes N and edges E

How could we implement a convolution of G with a weight
matrix W?

The result of a convolution is again a graph2, i.e.

G′ = G ∗W

2Remember that convolution on images also returns an image
15 33

Graph convolutions

Graph G with 5 nodes and 5 edges:

We assign a feature vector xi ∈ Rp to the i-th node

The feature vector can depend on the type of the node

Nodes of the same type might share the same feature vector

16 33

Graph convolutions

Graph G with 5 nodes and 5 edges:

x1

x2

x3

x5

x4

We assign a feature vector xi ∈ Rp to the i-th node

The feature vector can depend on the type of the node

Nodes of the same type might share the same feature vector

16 33

Graph convolutions

Let A = (aij)ij ∈ Rk×k denote the adjacency matrix of a graph
with k nodes
The strength of the connection between node i and j is given
by aij
Self-connections aii ̸= 0 allow to incorporate the features of
the nodes itself
The convolution operation updates the feature vector of
node i by summing over the contributions of all neighbor
nodes, i.e.

x′i = σ

∑
j̸=i

aijWxj

where W ∈ Rp×p and σ is the activation function3

3Graph convolutions are permutation equivariant
17 33

Graph convolutions

For the full graph we obtain

X′︸︷︷︸
k×p

= σ(A︸︷︷︸
k×k

X︸︷︷︸
k×p

W⊤︸︷︷︸
p×p

)

where X ∈ Rk×p is the matrix of k feature vectors
Note that the weight matrix W does not depend on the size
and connectivity of the graph
W can be applied to multiple graphs and optimized during
training of the graph convolutional neural network (GCNN)
GCNNs typically apply multiple convolutions and afterwards
compute summary statistics of the feature vectors, the result
can then be used in a conventional neural network

3Many extensions and generalizations exist
[Battaglia et al., 2018, Dwivedi et al., 2020]

18 33

Auto-encoders

Auto-encoders

Embeddings implicitly group categories by their similarity

Auto-encoders [Kramer, 1991] learn hidden representations
for non-categorical data:

X . . .

. . .} . . .

. . . X'

Encoder

}
Decoder

Embedding
or

latent space

During training, the error between X and X′ is minimized

The embedding or latent space should have lower
dimension than the input space

19 33

Auto-encoders - Formal definition

The encoder fW : Rp → Rq is a neural network with weights
W that maps a sample x ∈ Rp into a q-dimensional feature
space

The decoder gV : Rq → Rp takes a point in feature space and
maps it back to input space

Given a set of training points {xi}i we train the auto-encoder
by minimizing the error between the input and output of the
network, i.e.

W, V = argmin
W,V

∥xi − (gv ◦ fW)(xi)∥2
2

20 33

Auto-encoders - Purpose

Dimensionality reduction and visualization
(similar to PCA and t-SNE)

Compression to most important features (encoder output)

Denoising and image restauration (decoder output), by
adding noise to images before sending it to the encoder

. . .

. . .} . . .

. . .

Encoder

}
Decoder

Clustering and outlier detection on the latent space

21 33

Variational auto-encoders (VAEs)

Can we use auto-encoders for generating data? I.e. we could
sample a point from the latent space and decode the
corresponding data point

Practice has shown that this appproach does not work

The latent space has many holes where the decoder
generates garbage

Variational auto-encoders (VAEs) [Kingma and Welling, 2013]
are a probabilistic formuation of auto-encoders, that
regularize the latent space

22 33

Variational auto-encoders (VAEs)

. . .

. . .

X'~

X . . .

. . .}

Encoder

}
Decoder

Embedding
or

latent space

q (Z | X)
λ

λ Z θ

p (X' | Z)
θZ~

Instead of learning latent representations directly, VAEs
learn the parameters of given distributions

The encoder learns the parameters λ of the distribution
qλ(z | x)

The decoder learns the parameters θ of the distribution
pθ(x | z)

Training is more complicated, i.e. minimize the KL-divergence
23 33

Attention

Sequential data

x1 x2 xn...

y2

Input / query:

yn

Word 1 Word 2 Word n

Translated word 1 Translated word 2 Translated word n

y1Output:

Translations require special architectures that can deal with:

▶ Variable sentence lengths, i.e. variable n

▶ Long-range dependencies

24 33

Recurrent neural Networks

x1 x2 xn...

y2

Input / query:

yn

Word 1 Word 2 Word n

Translated word 1 Translated word 2 Translated word n

y1Output:

RNN(1) RNN(2)RNN(0) RNN(n)

...

...

...

Recurrent neural networks (RNNs) are sequentially applied
to each input xi
The architecture and weights are the same for all steps
i.e. for RNN(0), RNN(1), . . . , RNN(n)
At each step i, RNNs take the input xi and the state of the
previous step i− 1 as input

25 33

Attention is all you need

Recurrent neural networks (RNNs) were traditionally used
for sequence data and to model long-range interactions
Traditional RNNs have extreme vanishing / exploding
gradient problem
Long-short term memory (LSTM)
[Hochreiter and Schmidhuber, 1997] solved this problem, but
is still difficult to train

▶ On a large input sequence it corresponds to a very deep
neural network

▶ Transfer learning never worked for LSTM

Transformers with attention layer
[Bahdanau et al., 2014, Vaswani et al., 2017] are an
alternative to RNNs and show better performance

26 33

Self-attention layer

x1 x2 xn...

y1 y2

s21x2

x1

s22x2

x2

s2nx2

xn

Input / query:

s21 s22 s2n...
softmax

xj ...
w21 w22 w2n...

w2jjΣ

Similarity:

Weights:

Output:

27 33

Self-attention layer

Let X = [x⊤1 , x⊤2 , . . . , x⊤n] ∈ Rn×p denote the data matrix, i.e.
the embeddings of the input sequence

The self-attention layer computes the i-th output yi ∈ Rp as
follows:

si = x⊤i X
⊤

wi = softmax(si) =
(

esij∑n
k=1 esik

)
j=1,2,...,n

yi = wiX
The self-attention layer computes the entire output
Y ∈ Rn×p as follows:

Y = softmax (XX⊤)︸ ︷︷ ︸
kernel

X

where the softmax is applied independently to each row
28 33

Self-attention maps

The self-attention map is defined as

A = softmax(XX⊤)

The matrix A can be visualized to inspect attention

x1

x2

x3

x4

x5

x6

x7

x8

x1 x2 x3 x4 x5 x6 x7 x8

29 33

Attention layer

Except for the embeddings (xi)i, the self-attention layer has
no parameters that can be optimized

For self-attention, the input sequence focuses attention on
the input sequence itself and a linear combination of the
input sequence x1, x2, . . . , xn is returned

The attention layer is a generalization of the self-attention
layer, where

▶ attention is focused on a set of m keys k1, . . . , km, with kj ∈ Rp

▶ a linear combination of m values v1, . . . , vm is returned, where
vj ∈ Rp

The attention layer implements a differentiable data
retrieval method for a database of m keys and values

30 33

Attention layer

x1 x2 xn...

y1 y2

s21x2

k1

s22x2

k2

s2nx2

kn

Input / query:

s21 s22 s2n...
softmax

vj ...
w21 w22 w2n...

w2jjΣ

Similarity:

Weights:

Output:

31 33

Attention layer

Let K ∈ Rm×p and V ∈ Rm×p denote a set of m keys and
values

The attention layer computes the entire output Y ∈ Rn×p as
follows:

Y = softmax(XK⊤)V

Remarks:

▶ There exist several variants of the attention layer
▶ Transformers use a both attention and self-attention layers
▶ The sequential order is lost for self-attention and attention

layers
▶ Transformers use another encoding for restoring relative

word positions
▶ Multiple attention heads are commonly used

32 33

Transfer learning

Some of the most successful deep learning models:

▶ Protein folding: AlphaFold [Jumper et al., 2021]

▶ Vision: GoogLeNet [Szegedy et al., 2015],
Squeeze-and-Excitation Networks (SENet) [Hu et al., 2018]

▶ Translation: BERT [Devlin et al., 2018], Text-to-Text Transfer
Transformer (T5) [Raffel et al., 2019]

Training T5 (11B-parameter variant) costs well above $1.3
million [Sharir et al., 2020]

True deep neural networks are not affordable for most
academics

Transfer learning allows to adapt pre-trained models

33 / 33

References I

Bahdanau, D., Cho, K., and Bengio, Y. (2014).
Neural machine translation by jointly learning to align and
translate.
arXiv preprint arXiv:1409.0473.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A.,
Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A.,
Faulkner, R., et al. (2018).
Relational inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018).
Bert: Pre-training of deep bidirectional transformers for
language understanding.
arXiv preprint arXiv:1810.04805.

References II

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and Bresson, X.
(2020).
Benchmarking graph neural networks.
arXiv preprint arXiv:2003.00982.

Hochreiter, S. and Schmidhuber, J. (1997).
Long short-term memory.
Neural computation, 9(8):1735–1780.

Hu, J., Shen, L., and Sun, G. (2018).
Squeeze-and-excitation networks.
In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7132–7141.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A.,
Potapenko, A., et al. (2021).
Highly accurate protein structure prediction with alphafold.
Nature, 596(7873):583–589.

References III

Kingma, D. P. and Welling, M. (2013).
Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114.

Kramer, M. A. (1991).
Nonlinear principal component analysis using autoassociative
neural networks.
AIChE journal, 37(2):233–243.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M.,
Zhou, Y., Li, W., and Liu, P. J. (2019).
Exploring the limits of transfer learning with a unified
text-to-text transformer.
arXiv preprint arXiv:1910.10683.

Sharir, O., Peleg, B., and Shoham, Y. (2020).
The cost of training nlp models: A concise overview.
arXiv preprint arXiv:2004.08900.

References IV

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015).
Going deeper with convolutions.
In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1–9.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, Ł., and Polosukhin, I. (2017).
Attention is all you need.
Advances in neural information processing systems, 30.

	Embeddings
	Convolutional Neural Networks for Images
	Graph Convolutional Neural Networks (GCNNs)
	Auto-encoders
	Attention
	Appendix

