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OUTLINE

m Part of this lecture:
» Embeddings
> Auto-encoders
» Convolutions on images and graphs
> Attention mechanism
m Other important architectures not covered here:
» Generative adversarial networks (GANs)
> Deep tensor factorization

» Recurrent neural networks (LSTM/GRU)




EMBEDDINGS



ONE-HOT ENCODING

m Assume we want to work with categorical data, e.g.
> DNA or protein sequences

> Text (vectors of words)

m Traditionally, we would use one-hot encoding, which use a
dimension for each category

m For example, a DNA sequence ACGTTA could be represented
as
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ONE-HOT ENCODING

m One-hot encodings have several problems

m For data with many categories, we obtain very
high-dimensional feature vectors, e.g.

» Protein sequences would already require 20 dimensions
» Text would require one dimension per word type

m One-hot encodings should be used for purely categorical
data, where we have no similarity between categories

m However, for most data we have certain similarities, e.g.
» Amino acid replacements have different effects, which

suggests that some amino acids are more similar in function
than others



EMBEDDINGS
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m We assign each category k a feature vector x;, ¢ RP

m The representations x; are randomly initialized and
optimized during training

m After training we often observe that similar categories
cluster together




CONVOLUTIONAL NEURAL NETWORKS
FOR IMAGES




IMAGE PATTERN DETECTION

Conway'’s Game of Life - glider gun:
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IMAGE PATTERN DETECTION

Glider gun detector:
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IMAGE PATTERN DETECTION
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IMAGE PATTERN DETECTION
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IMAGE PATTERN DETECTION
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IMAGE PATTERN DETECTION
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IMAGE PATTERN DETECTION
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IMAGE PATTERN DETECTION
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IMAGE PATTERN DETECTION

Glider gun detector:




IMAGE PATTERN DETECTION

Glider gun detector:
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IMAGE PATTERN DETECTION

Glider gun detector:
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IMAGE PATTERN DETECTION

Glider gun detector:
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IMAGE PATTERN DETECTION

Glider gun detector:
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IMAGE PATTERN DETECTION

Glider gun detector:
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IMAGE PATTERN DETECTION
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IMAGE PATTERN DETECTION - CONVOLUTION

W,

m Let X; € R" denote the j-th image patch of image X, e.g.

% T
X, = (0,0,0,0,0, 0,0,0,1,0, 0,1,0,1,0,...)

m Let w, € R" denote the k-th glider pattern or kernel, e.g.

-
w, = (0,0,0,0,0, 0,0,1,0,0, 0,0,0,1,0,...)
m The output y; at position j is given by

sT
Yj = X; Wk




IMAGE PATTERN DETECTION - CONVOLUTION

m Let X € R9*" denote the matrix of g image patches from
image X and W € R"*P the matrix of kernels, i.e.
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m The result Y € R9*P of applying the kernel matrix W to image
X is given by

Y =XW =X W

where” %" is called convolution’

"Technically, we are computing a cross-correlation and not a convolution
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EQUIVARIANCE

m Let X be an image and W a filter
B p(X) = X« W denotes a convolution with W
m 7(X) is a translation of an image

m The following diagram shows that ¢ is equivariant with
respectto 7

X —*2 5y
X —2 5y
m Exception are the borders of images



WHY EQUIVARIANCE AND NOT INVARIANCE?




IMAGE PATTERN DETECTION
[ [ m Stack multiple
# convolutions

m Case 1: All images have
the same dimension

Feed into neural network

m Case 2: Images have
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POOLING LAYERS

m Applying kernels leads to translation-equivariant features
m Pooling layers add (limited amount of) translation invariance

m Average pooling

m Max pooling
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GRAPH CONVOLUTIONAL NEURAL
NETWORKS (GCNNS)
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GRAPH CONVOLUTIONS

m Convolutions are not only restricted to image and
time-series data

m Graph convolutions are used to model the interaction
between nodes

m Let G = (N, E) denote a graph with nodes N and edges E

m How could we implement a convolution of G with a weight
matrix W?

m The result of a convolution is again a graph?, i.e.

G=GxW

2Remember that convolution on images also returns an image




GRAPH CONVOLUTIONS

m Graph G with 5 nodes and 5 edges:

m We assign a feature vector x; € RP to the i-th node
m The feature vector can depend on the type of the node

m Nodes of the same type might share the same feature vector



GRAPH CONVOLUTIONS

m Graph G with 5 nodes and 5 edges:

X3

m We assign a feature vector x; € RP to the i-th node
m The feature vector can depend on the type of the node

m Nodes of the same type might share the same feature vector



GRAPH CONVOLUTIONS

m Let A = (a;); € R®* denote the adjacency matrix of a graph
with k nodes

m The strength of the connection between node i and j is given
by a;;

m Self-connections ag;; # 0 allow to incorporate the features of
the nodes itself

m The convolution operation updates the feature vector of
node i by summing over the contributions of all neighbor
nodes, i.e.

X =o | 3 ai
J#i
where W € RP*P and ¢ is the activation function3

3Graph convolutions are permutation equivariant



GRAPH CONVOLUTIONS

m For the full graph we obtain

X =c(A X W)
~—~ N~~~
kxp RxkR kRxp Pxp

where X € R**P is the matrix of k feature vectors

m Note that the weight matrix W does not depend on the size
and connectivity of the graph

m W can be applied to multiple graphs and optimized during
training of the graph convolutional neural network (GCNN)

m GCNNSs typically apply multiple convolutions and afterwards
compute summary statistics of the feature vectors, the result
can then be used in a conventional neural network

3Many extensions and generalizations exist
[Battaglia et al., 2018, Dwivedi et al., 2020]




AUTO-ENCODERS




AUTO-ENCODERS

m Embeddings implicitly group categories by their similarity

m Auto-encoders [Kramer, 1991] learn hidden representations
for non-categorical data:
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m During training, the error between X and X’ is minimized

m The embedding or latent space should have lower
dimension than the input space



AUTO-ENCODERS - FORMAL DEFINITION

m The encoder fy : RP — RY is a neural network with weights
W that maps a sample x € RP into a g-dimensional feature
space

m The decoder gy : R9 — RP takes a point in feature space and
maps it back to input space

m Given a set of training points {x;}; we train the auto-encoder

by minimizing the error between the input and output of the
network, i.e.

W,V = ar%vr\r)in Ix;i — (gv Ofw)(xi)Hg



AUTO-ENCODERS - PURPOSE

m Dimensionality reduction and visualization
(similar to PCA and t-SNE)

m Compression to most important features (encoder output)

m Denoising and image restauration (decoder output), by
adding noise to images before sending it to the encoder
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m Clustering and outlier detection on the latent space

>




VARIATIONAL AUTO-ENCODERS (VAES)

m Can we use auto-encoders for generating data? l.e. we could
sample a point from the latent space and decode the
corresponding data point

m Practice has shown that this appproach does not work

m The latent space has many holes where the decoder
generates garbage

m Variational auto-encoders (VAEs) [Kingma and Welling, 2013]
are a probabilistic formuation of auto-encoders, that
regularize the latent space




VARIATIONAL AUTO-ENCODERS (VAES)
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m Instead of learning latent representations directly, VAEs
learn the parameters of given distributions

m The encoder learns the parameters \ of the distribution
ax(z[x)

m The decoder learns the parameters 6 of the distribution
Po(x|2)

m Training is more complicated, i.e. minimize the KL-divergence



ATTENTION




SEQUENTIAL DATA

Translated word 1 Translated word 2 Translated word n
Output: Y1 Y2 Yn
Input / query: X1 X5 000 Xn
Word 1 Word 2 Word n

m Translations require special architectures that can deal with:

» Variable sentence lengths, i.e. variable n

> Long-range dependencies




RECURRENT NEURAL NETWORKS

Translated word 1 Translated word 2 Translated word n

Output: Y1 Y2 LR Yn

Input / query: X1 X, e X
Word 1 Word 2 Word n

m Recurrent neural networks (RNNs) are sequentially applied
to each input x;

m The architecture and weights are the same for all steps
i.e. for RNN(0), RNN(1), ..., RNN(n)

m At each step i, RNNs take the input x; and the state of the
previous step i — 1 as input




ATTENTION IS ALL YOU NEED

m Recurrent neural networks (RNNs) were traditionally used
for sequence data and to model long-range interactions

m Traditional RNNs have extreme vanishing / exploding
gradient problem

m Long-short term memory (LSTM)
[Hochreiter and Schmidhuber, 1997] solved this problem, but
is still difficult to train

» On a large input sequence it corresponds to a very deep
neural network

» Transfer learning never worked for LSTM

m Transformers with attention layer
[Bahdanau et al., 2014, Vaswani et al., 2017] are an
alternative to RNNs and show better performance



SELF-ATTENTION LAYER
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SELF-ATTENTION LAYER

m letX = [x/,X),...,Xx,] € R"™P denote the data matrix, i.e.
the embeddings of the input sequence

m The self-attention layer computes the i-th output y; € RP as
follows:

S = X’TX—r

e

Si}‘
Wi = SOftmaX(Si) = <n>
E:k:1e$k j=1,2,..,n
yi = wiX

m The self-attention layer computes the entire output
Y € R"™P as follows:
Y = softmax (XX ") X

N——
kernel

where the softmax is applied independently to each row




SELF-ATTENTION MAPS

m The self-attention map is defined as
A = softmax(XX ")

m The matrix A can be visualized to inspect attention

X1 X5 X3 Xy X5 Xg X5 Xg




ATTENTION LAYER

m Except for the embeddings (x;);, the self-attention layer has
no parameters that can be optimized

m For self-attention, the input sequence focuses attention on
the input sequence itself and a linear combination of the
input sequence X4, Xo, ..., Xp is returned

m The attention layer is a generalization of the self-attention
layer, where

> attention is focused on a set of m keys k, ..., Ry, with R; € RP
» a linear combination of m values v,, ..., vy, is returned, where
Vj c RP

m The attention layer implements a differentiable data
retrieval method for a database of m keys and values



ATTENTION LAYER
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ATTENTION LAYER

m Let K € R™*P and V € R™*P denote a set of m keys and
values

m The attention layer computes the entire output Y € R"*P as
follows:
Y = softmax(XK ")V

m Remarks:

» There exist several variants of the attention layer
» Transformers use a both attention and self-attention layers

» The sequential order is lost for self-attention and attention
layers

» Transformers use another encoding for restoring relative
word positions

» Multiple attention heads are commonly used



TRANSFER LEARNING

m Some of the most successful deep learning models:

» Protein folding: AlphaFold [Jumper et al., 2021]

> Vision: GoogleNet [Szegedy et al., 2015],
Squeeze-and-Excitation Networks (SENet) [Hu et al., 2018]

» Translation: BERT [Devlin et al., 2018], Text-to-Text Transfer
Transformer (T5) [Raffel et al., 2019]

m Training Ts5 (11B-parameter variant) costs well above $1.3
million [Sharir et al., 2020]

m True deep neural networks are not affordable for most
academics

m Transfer learning allows to adapt pre-trained models

33/33
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