Machine Learning in Bioinformatics
 Model Selection and Regularization

Philipp Benner
philipp.benner@bam.de
VP. 1 - eScience
Federal Institute of Materials Research and Testing (BAM)

April 25, 2024

MOdeL SELECTION PROBLEM

Linear model class

MODEL SELECTION

Quadratic model class

MODEL SELECTION

Polynomial model class

BIAS-VARIANCE DECOMPOSITION AND TRADEOFF

BIAS-VARIANCE DECOMPOSITION

- Let \mathbf{Y}, \mathbf{X} and ϵ be random variables such that $\mathbf{Y}=f(\mathbf{X})+\epsilon$, with $\mathbb{E}[\epsilon]=0$ and $\operatorname{var}[\epsilon]=\sigma^{2}$
- Assume that \hat{f}_{D} has been estimated on some training data $D=(X, y)$, where X is a matrix of n observations from X and y a vector of n observations from \mathbf{Y}

■ At a query point x we have

$$
\mathbb{E}_{\mathbf{Y}, D}\left[\left(\mathbf{Y}-\hat{f}_{D}(x)\right)^{2}\right]=\underbrace{\left[\mathbb{E}_{D} \hat{f}_{D}(x)-f(x)\right]^{2}}_{\text {Bias }^{2}}+\underbrace{\mathbb{E}_{D}\left[\hat{f}_{D}(x)-\mathbb{E}_{D} \hat{f}_{D}(x)\right]^{2}}_{\text {Variance }}+\sigma^{2}
$$

■ bias: Is there a bias towards a particular kind of solution (e.g. linear model)? (inductive bias)

■ variance: How much does the estimated model change if you train on a different data set? (overfitting)

BIAS-VARIANCE DECOMPOSITION

Low variance

High variance

BIAS-VARIANCE DECOMPOSITION

${ }^{\circ}$ Note that here we average over multiple data sets. On a single data set we might observe bumps when increasing model complexity

BIAS-VARIANCE DECOMPOSITION

${ }^{\circ}$ Note that here we average over multiple data sets. On a single data set we might observe bumps when increasing model complexity

BIAS-VARIANCE DECOMPOSITION - LESSIONS LEARNED

■ Every model comes with a bias
■ More complex models have a smaller bias but larger variance
■ A bias is required to reduce the variance, but introducing a good bias requires domain knowledge

- Classical statistics often uses unbiased estimators, which is nowadays often questioned

■ Keep in mind: There is no free lunch! ${ }^{1}$

[^0]
COMPLEXITY MEASURES

COMPLEXITY OF CLASSIFIERS - VC DIMENSION

VC-Dimension (Vapnik Chervonenkis)

Let \mathbb{F}_{p} be a set of classifiers on an n-dimensional input space. The VC -dimension $\operatorname{VC}\left(\mathbb{F}_{p}\right)$ is defined as the maximum number of points that can be correctly classified by at least one member of \mathbb{F}_{p}.

■ Examples:

- Linear classifier on $\mathbb{R}^{p}: \mathrm{VC}=p+1$
- SVM with RBF kernel: $\mathrm{VC}=\infty$
- Neural network with n_{e} edges, n_{v} nodes and sigmoid activation function: $\Omega\left(n_{e}^{2}\right)<\mathrm{VC}<\mathcal{O}\left(n_{e}^{2} n_{v}^{2}\right)$ [Shalev-Shwartz and Ben-David, 2014, Section 20.4]

COMPLEXITY OF CLASSIFIERS - VC DIMENSION

MEASURES OF MODEL COMPLEXITY - DF

Degrees of Freedom (DF) [Efron, 1986]

The degrees of freedom of an estimate $\hat{y}=\hat{f}(X)$ is defined as

$$
\operatorname{df}(\hat{y})=\frac{1}{\sigma^{2}} \sum_{i=1}^{n} \operatorname{cov}\left(\hat{y}_{i}, y_{i}\right)=\frac{1}{\sigma^{2}} \operatorname{tr} \operatorname{cov}(\hat{y}, y),
$$

where

- X denotes a fixed set of n covariates of dimension p
- $y=\left(y_{1}, \ldots, y_{n}\right)$ is a vector of n observations from

$$
\mathbf{Y}=f(X)+\epsilon
$$

for some function f, assuming $\mathbb{E}[\epsilon]=0$ and $\operatorname{var}[\epsilon]=\sigma^{2}$
${ }^{1} \mathrm{df}$ is normalized by the magnitude of the aleatory uncertainty $\left(\sigma^{2}\right)$

MEASURES OF MODEL COMPLEXITY - DF

■ Degrees of freedom for the OLS estimate:

$$
\begin{aligned}
\operatorname{df}(\hat{y}) & =\frac{1}{\sigma^{2}} \operatorname{tr} \operatorname{cov}(\hat{y}, y) \\
& =\frac{1}{\sigma^{2}} \operatorname{tr} \operatorname{cov}\left(X\left(X^{\top} X\right)^{-1} X^{\top} y, y\right) \\
& =\frac{1}{\sigma^{2}} \operatorname{tr}\left(X\left(X^{\top} X\right)^{-1} X^{\top}\right) \operatorname{cov}(y, y) \\
& =\operatorname{tr}\left(X\left(X^{\top} X\right)^{-1} X^{\top}\right) \\
& =p
\end{aligned}
$$

■ $\operatorname{df}(\hat{y})=p$, i.e. the number of parameters, assuming independent feature vectors (i.e. columns of X)

■ This result holds for $p<n$

MEASURES OF MODEL COMPLEXITY - DF

- Ridge regression is defined as

$$
\hat{\theta}=\underset{\theta}{\arg \min }\|y-X \theta\|_{2}^{2}+\lambda\|\theta\|_{2}^{2}
$$

for some regularization strength $\lambda \geq 0$
■ The ridge estimator has

$$
\operatorname{df}(\hat{y})=\sum_{j=1}^{p} \frac{d_{j}^{2}}{d_{j}^{2}+\lambda}
$$

degrees of freedom, where $\left(d_{j}\right)_{j}$ are the singular values of X
■ Increasing λ decreases model complexity

MEASURES OF MODEL COMPLEXITY - DF

- There is some criticism about used DF as measure of model complexity [Janson et al., 2015]
- In some cases, we also need X to be random
[Luan et al., 2021]
- We will see other measures when turning to model selection

MODEL SELECTION

MODEL SELECTION APPROACHES

■ A measure of accuracy or fit, such as the mean squared error (MSE), is not enough: Increasing model complexity will always lead to a better fit

- Estimating a model requires to minimize both
- in-sample-error (loss on training data), and
- out-of-sample-error (generalization error)

■ Cross-validation (CV) estimates generalization error on left-out samples ${ }^{2}$

- Traditional statistics: Combine measure of accuracy (in-sample-error) with a penalty for complexity
${ }^{2}$ Heavy hyperparameter tuning using CV can lead to overfitting and requires to select a final holdout set

Model selection approaches - LOO-CV

■ Leave-one-out Cross-Validation (LOO-CV) at iteration $i=1,2, \ldots, n$:

- Compute estimate on data set without the i-th sample
- Compute prediction error on the i-th sample

■ Report the average prediction error over all n samples
■ PRESS statistic (predicted residual error sum of squares):

$$
\operatorname{PRESS}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{-i}\right)^{2}
$$

where \hat{y}_{-i} is the prediction for the i-th sample where the model has been estimated on all but the i-th sample

Model Selection approaches - PRESS

■ LOO-CV is very costly for large data sets and complex models
■ k-fold CV with $k=5$ or $k=10$ is often used in practice
■ For (ridge) linear regression with mean squared error we can efficiently compute LOO-CV [Cook, 1977]

$$
\begin{aligned}
\operatorname{PRESS} & =\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{-i}\right)^{2} \\
& =\sum_{i=1}^{n} \frac{\left(y_{i}-\hat{y}_{i}\right)^{2}}{\left(1-H_{i i}\right)^{2}}
\end{aligned}
$$

- The matrix

$$
H=X\left(X^{\top} X+\lambda I\right)^{-1} X^{\top}
$$

is called the hat matrix, because it puts a hat on y, i.e. $\hat{y}=H y$

MODEL SELECTION APPROACHES

- LOO-CV is computationally very expensive
- k-fold CV is cheaper, but uses a large fraction of the data for testing
- Model performance could be better if this data was used for training
- Overfitting if we use CV for testing too many models (requires final hold out data)
- Can we do model selection by using all data for training?

Model selection approaches - DF

- Assume again the following model

$$
\mathbf{Y}=f(X)+\epsilon
$$

where $X \in \mathbb{R}^{n \times p}$ is a fixed set of n predictors and $\mathbf{Y} \in \mathbb{R}^{n}$
■ Setup is very similar to the bias-variance decomposition, but X is now fixed

■ Let $\mathbf{Y}_{t} \in \mathbb{R}^{n}$ a vector of n independent observations and $\hat{f}_{\mathbf{Y}_{t}}$ an estimate on the training set $\left(X, \mathbf{Y}_{t}\right)$, then [Efron, 1986]

$$
\underbrace{\mathbb{E}_{\mathbf{Y}, \mathbf{Y}_{t}}\left\|\mathbf{Y}-\hat{f}_{\mathbf{Y}_{t}}(X)\right\|_{2}^{2}}_{\text {expected prediction error }}=\underbrace{\mathbb{E}_{\mathbf{Y}_{t}}\left\|\mathbf{Y}_{t}-\hat{f}_{\mathbf{Y}_{t}}(X)\right\|_{2}^{2}}_{\text {expected training error }}+2 \sigma^{2} \mathrm{df}(\hat{f})
$$

MODEL SELECTION APPROACHES - DF

■ This motivates the following model selection criterium [Mallows, 2000]

$$
\underbrace{\left\|y_{t}-\hat{f}_{y_{t}}(X)\right\|_{2}^{2}}_{\text {training error }}+\underbrace{2 \sigma^{2} \mathrm{df}(\hat{f})}_{\text {complexity penalty }}
$$

■ The more complex a model, the larger the penalty
■ If two models fit the data equally well, we select the simpler one (Occam's razor)

Model selection approaches - Bayes Approach

■ Assume we have a set of models $\left(m_{i}\right)_{i}$
■ In a probabilistic setting we evaluate the probability of a model m_{i} given data x, i.e. using Bayes theorem

$$
\operatorname{pr}\left(m_{i} \mid x\right)=\frac{\operatorname{pr}\left(x \mid m_{i}\right) \operatorname{pr}\left(m_{i}\right)}{\sum_{j} \operatorname{pr}\left(x \mid m_{j}\right) \operatorname{pr}\left(m_{j}\right)}=\frac{\operatorname{pr}\left(x \mid m_{i}\right) \operatorname{pr}\left(m_{i}\right)}{\operatorname{pr}(x)}
$$

- We compare two models m_{i} and m_{j} using

$$
\frac{\operatorname{pr}\left(m_{i} \mid x\right)}{\operatorname{pr}\left(m_{j} \mid x\right)}=\frac{\frac{\operatorname{pr}\left(x \mid m_{i}\right) \operatorname{pr}\left(m_{i}\right)}{\operatorname{pr}(x)}}{\frac{\operatorname{pr}\left(x \mid m_{j}\right) \operatorname{pr}\left(m_{j}\right)}{\operatorname{pr}(x)}}=\frac{\operatorname{pr}\left(x \mid m_{i}\right) \operatorname{pr}\left(m_{i}\right)}{\operatorname{pr}\left(x \mid m_{j}\right) \operatorname{pr}\left(m_{j}\right)}
$$

because $\operatorname{pr}(x)$ drops

MODEL SELECTION APPROACHES - BAYES FACTOR

- With a uniform prior over models we arrive at the Bayes factor [Kass and Raftery, 1995]

$$
\frac{\operatorname{pr}\left(x \mid m_{i}\right)}{\operatorname{pr}\left(x \mid m_{j}\right)}
$$

■ Hence, in Bayesian model selection, we evaluate a model m based on its marginal likelihood

$$
\operatorname{pr}(x \mid m)=\int_{\theta} \operatorname{pr}(x \mid \theta, m) \operatorname{pr}(\theta \mid m) \mathrm{d} \theta
$$

where θ are the model parameters
■ The marginal likelihood is often difficult to evaluate, even numerically!

Model selection approaches - BIC

- The marginal likelihood is tractable only for very simple models
- As an alternative, we use approximations of the marginal likelihood
- The Bayes information criterion (BIC) is such an approximation. Let x contain n samples and assume that $n \gg p$, then

$$
\begin{aligned}
\operatorname{pr}(x \mid m) & \approx \exp \left\{-\frac{1}{2} \operatorname{BIC}(x ; m)\right\} \\
\operatorname{BIC}(x ; m) & =-2 \log \operatorname{pr}(x \mid \hat{\theta}, m)+p \log (n)
\end{aligned}
$$

where $\hat{\theta}$ refers to the maximum likeklihood estimate and p to the number of parameters

MODEL SELECTION APPROACHES - BIC

- Let \mathbf{Y} and ϵ be two random variables such that $\mathbf{Y}=f(X)+\epsilon$

■ Let $f_{\hat{\theta}}$ denote a maximum likelihood estimate on some training data

■ For $\epsilon \sim \operatorname{Normal}\left(0, \sigma^{2}\right)$ the BIC is related to the mean squared error with complexity penalty

$$
\begin{aligned}
\operatorname{BIC}(x ; m) & =\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-f_{\hat{\theta}}\left(x_{i}\right)\right)^{2}+p \log (n)+C_{n} \\
& \propto \frac{1}{\sigma^{2}}\left\|y-f_{\hat{\theta}}(x)\right\|_{2}^{2}+p \log (n)
\end{aligned}
$$

where C_{n} is a constant depending on n, which can be dropped for model comparison

MODEL SELECTION APPROACHES - FIC

- BIC assumes $n \gg p$ and therefore depends only on the number of parameters

■ Fisher Information Approximation (FIA) [Ly et al., 2017]:

$$
\begin{aligned}
\operatorname{pr}(x \mid m) & \approx \exp \{-\operatorname{FIA}(x ; m)\} \\
\operatorname{FIA}(x ; m) & =\underbrace{-\log \operatorname{pr}(x \mid \hat{\theta}, m)+\frac{p}{2} \log \left(\frac{n}{2 \pi}\right)}_{\text {BIC like term }}+\log C_{m} \\
C_{m} & =\underbrace{\int_{\theta} \sqrt{\operatorname{det} \mathcal{I}_{m}(\theta)} \mathrm{d} \theta}_{\text {Geometric complexity }}
\end{aligned}
$$

where \mathcal{I}_{m} denotes the Fisher information matrix

- C_{m} is essential if $n \gg p$ is not given
[Cheema and Sugiyama, 2020]

How do we control model complexity?

■ Regularization (e.g. ridge regression):

- Constrain the feasible set of parameter values
- Keep the number of parameters in the model constant, but allow them to become zero

■ Number of parameters:

- A good approximation of model complexity if $n<p$
- For $n>p$ we saw that the optimization problem has many solutions
- In deep neural networks, the gradient descent method can act similar to a regularizer
- Model complexity can decrease when adding more parameters (double descent)

REGULARIZATION

l_{k}-Penalized Regression

Objective function

$$
\begin{array}{ll}
\omega(\theta)=-\log \operatorname{pr}_{\theta}(y) & \text { (maximum likelihood), or } \\
\omega(\theta)=\|y-X \theta\|_{2}^{2} & \text { (linear regression) }
\end{array}
$$

Regularized estimate with ℓ_{k}-norm penalty

$$
\hat{\theta}= \begin{cases}\underset{\theta}{\arg \min } & \omega(\theta) \\ \text { subject to } & \|\theta\|_{k}^{k}=\Lambda\end{cases}
$$

where

$$
\|\theta\|_{k}=\left(\sum_{j=2}^{p}\left|\theta_{j}\right|^{k}\right)^{1 / k}
$$

${ }^{2}$ Remember that we do not regularize the bias or y-intercept θ_{0}

l_{k}-PENALIZED REGRESSION

Identify saddle points of Lagrangian

$$
\mathcal{L}(\theta, \lambda)=\omega(\theta)+\lambda\left(\|\theta\|_{k}^{k}-\Lambda\right)
$$

In practice, we do not work with Λ, but set λ such that the classification performance is optimal, i.e. we work with the Lagriangian

$$
\hat{\theta}(\lambda)=\underset{\theta}{\arg \min } \omega(\theta)+\lambda\|\theta\|_{k}^{k}
$$

At the optimum we must have

$$
\nabla_{\theta} \omega(\theta)+\lambda \nabla_{\theta}\|\theta\|_{k}^{k}=0
$$

i.e. the gradients of $\omega(\theta)$ and $\lambda\|\theta\|_{k}^{k}$ must point to opposite directions

IMPLICIT REGULARIZATION AND DOUBLE DESCENT

Number of parameters

MINIMUM ℓ_{2}-NORM ESTIMATE - DF

${ }^{2}$ Requires a more advanced definition of DF that treats X as random variable [Luan et al., 2021]

IMPLICIT REGULARIZATION

Figure: Fitting degree $d=p-1$ Legendre polynomials. For $p>n$ the solution with the smallest ℓ_{2}-norm is used.

[^1]
TAKE HOME MESSAGES

■ Expected performance is the sum of training performance and model complexity

■ Complex models require regularization to prevent overfitting
■ The number of parameters does not correspont to the complexity of a model

■ Increasing the number of features can reduce model complexity if a min- ℓ_{2}-norm estimator is used

■ If we have complex data and cannot make any assumptions on the generating process, we might be better off with an overparametrized model using regularization (success behind deep learning)

More references

■ Akaike information criterion (AIC) [Akaike, 1974, Cavanaugh and Neath, 2019]

■ Bayesian information criterion (BIC) [Schwarz, 1978]

- Deviance information criterion (DIC) [Spiegelhalter et al., 2002]

■ Fisher Information Approximation (FIA) [Rissanen, 1996, Grünwald, 2007, Cheema and Sugiyama, 2020]

- Degrees of freedom (DF) [Tibshirani, 2015, Gao and Jojic, 2016, Luan et al., 2021]

■ Implicit regularization and double descent [Hastie et al., 2022, Luan et al., 2021, Derezinski et al., 2020, Kobak et al., 2020]

■ Sections 3.4, 7.3, 7.6, 7.7 and 7.9 [Hastie et al., 2009]

The End

"All models are wrong, but some are useful." [Moody, 1991]

References I

國 Akaike, H. (1974).
A NEW LOOK AT THE STATISTICAL MODEL IDENTIFICATION.
IEEE transactions on automatic control, 19(6):716-723.

- Cavanaugh, J. E. and Neath, A. A. (2019).

The akaike information criterion: Background, derivation, PROPERTIES, APPLICATION, INTERPRETATION, AND REFINEMENTS. Wiley Interdisciplinary Reviews: Computational Statistics, 11(3):e1460.

Cheema, P. and Sugiyama, M. (2020).
Double descent risk and volume saturation effects: A geometric PERSPECTIVE.
arXiv preprint arXiv:2006.04366.
围 Соок, R. D. (1977).
Detection of influential observation in linear regression. Technometrics, 19(1):15-18.

References II

- Derezinski, M., Liang, F. T., and Mahoney, M. W. (2020). EXACT EXPRESSIONS FOR DOUBLE DESCENT AND IMPLICIT REGULARIZATION VIA SURROGATE RANDOM DESIGN.
Advances in neural information processing systems, 33:5152-5164.
EFRON, B. (1986).
How biased is the apparent error rate of a prediction rule? Journal of the American statistical Association, 81(394):461-470.

圊 GAO, T. AND JOJIC, V. (2016).
DEGREES OF FREEDOM IN DEEP NEURAL NETWORKS. arXiv preprint arXiv:1603.09260.

- GRÜNWALD, P. D. (2007).

THE MINIMUM DESCRIPTION LENGTH PRINCIPLE. MIT press.

References III

圊 Hastie，T．，Montanari，A．，Rosset，S．，AND Tibshirani，R．J．（2022）． SURPRISES IN HIGH－DIMENSIONAL RIDGELESS LEAST SQUARES INTERPOLATION．
The Annals of Statistics，50（2）：949－986．
國 HAStie，T．，TibSHIRANI，R．，AND Friedman，J．（2009）．
THE ELEMENTS OF STATISTICAL LEARNING：DATA MINING，INFERENCE，AND PREDICTION．
Springer Science \＆Business Media．
國 Janson，L．，Fithian，W．，and Hastie，T．J．（2015）． EFFECTIVE DEGREES OF FREEDOM：A FLAWED METAPHOR．
Biometrika，102（2）：479－485．
Kass，R．E．and Raftery，A．E．（1995）．
BAYES FACTORS．
Journal of the american statistical association，90（430）：773－795．

References IV

囯 Ковак, D., Lomond, J., and Sanchez, B. (2020).
THE OPTIMAL RIDGE PENALTY FOR REAL-WORLD HIGH-DIMENSIONAL DATA CAN BE ZERO OR NEGATIVE DUE TO THE IMPLICIT RIDGE REGULARIZATION. J. Mach. Learn. Res., 21:169-1.

- Luan, B., Lee, Y., and Zhu, Y. (2021).

Predictive model degrees of freedom in linear regression. arXiv preprint arXiv:2106.15682.
回 LY, A., Marsman, M., Verhagen, J., Grasman, R. P., and Wagenmakers, E.-J. (2017).

A TUTORIAL ON FISHER INFORMATION. Journal of Mathematical Psychology, 80:40-55.
Mallows, C. L. (2000).
SOME COMMENTS ON CP.
Technometrics, 42(1):87-94.

References V

- Moody, J. (1991).

The effective number of parameters: An analysis of GENERALIZATION AND REGULARIZATION IN NONLINEAR LEARNING SYSTEMS.
Advances in neural information processing systems, 4.
R RISSANEN, J. J. (1996).
FISHER INFORMATION AND STOCHASTIC COMPLEXITY.
IEEE transactions on information theory, 42(1):40-47.
围 Schwarz, G. (1978).
Estimating the dimension of a model.
The annals of statistics, pages 461-464.

- Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge university press.

References VI

回 Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde, A. (2002).

BAyEsian measures of model complexity and fit. Journal of the royal statistical society: Series b (statistical methodology), 64(4):583-639.

R Tibshirani, R. J. (2015).
Degrees of freedom and model search.
Statistica Sinica, pages 1265-1296.
Wolpert, D. H. and Macready, W. G. (1997).
No free lunch theorems for optimization.
IEEE transactions on evolutionary computation, 1(1):67-82.

[^0]: ${ }^{1}$ The no free lunch theorem [Wolpert and Macready, 1997] tells us that there exists no generic model that works well on all domains, but we need to tailor our models to the data at hand in order to introduce a model bias, which reduces variance.

[^1]: ${ }^{2}$ Legendre polynomials are quite useful, since their absolute value is bounded by one.

