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Bias-variance decomposition and
tradeoff



Bias-Variance decomposition

Let Y,X and ϵ be random variables such that Y = f (X) + ϵ,
with E[ϵ] = 0 and var[ϵ] = σ2

Assume that f̂D has been estimated on some training data
D = (X, y), where X is a matrix of n observations from X and y
a vector of n observations from Y

At a query point x we have

EY,D[(Y− f̂D(x))2] = [ED f̂D(x)− f (x)]2︸ ︷︷ ︸
Bias2

+ED[f̂D(x)− ED f̂D(x)]2︸ ︷︷ ︸
Variance

+σ2

bias: Is there a bias towards a particular kind of solution
(e.g. linear model)? (inductive bias)
variance: How much does the estimated model change if you
train on a different data set? (overfitting)
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Bias-Variance decomposition
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0Note that here we average over multiple data sets. On a single data set we
might observe bumps when increasing model complexity
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Bias-Variance decomposition
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Bias-Variance decomposition - Lessions learned

Every model comes with a bias

More complex models have a smaller bias but larger variance

A bias is required to reduce the variance, but introducing a
good bias requires domain knowledge

Classical statistics often uses unbiased estimators, which is
nowadays often questioned

Keep in mind: There is no free lunch!1

1The no free lunch theorem [Wolpert and Macready, 1997] tells us that there
exists no generic model that works well on all domains, but we need to tailor
our models to the data at hand in order to introduce a model bias, which
reduces variance.
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Complexity measures



Complexity of classifiers - VC dimension

VC-Dimension (Vapnik Chervonenkis)
Let Fp be a set of classifiers on an n-dimensional input space.
The VC-dimension VC(Fp) is defined as the maximum number of
points that can be correctly classified by at least one member of
Fp.

Examples:
▶ Linear classifier on Rp: VC = p+ 1

▶ SVM with RBF kernel: VC = ∞

▶ Neural network with ne edges, nv nodes and sigmoid
activation function: Ω(n2

e) < VC < O(n2
en2

v)
[Shalev-Shwartz and Ben-David, 2014, Section 20.4]
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Complexity of classifiers - VC dimension
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Measures of model complexity - DF

Degrees of Freedom (DF) [Efron, 1986]
The degrees of freedom of an estimate ŷ = f̂ (X) is defined as

df(ŷ) = 1
σ2

n∑
i=1

cov(ŷi, yi) =
1
σ2 tr cov(ŷ, y) ,

where
X denotes a fixed set of n covariates of dimension p
y = (y1, . . . , yn) is a vector of n observations from

Y = f (X) + ϵ

for some function f , assuming E[ϵ] = 0 and var[ϵ] = σ2

1df is normalized by the magnitude of the aleatory uncertainty (σ2)
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Measures of model complexity - DF

Degrees of freedom for the OLS estimate:

df(ŷ) = 1
σ2 tr cov(ŷ, y)

=
1
σ2 tr cov

(
X(X⊤X)−1X⊤y, y

)
=

1
σ2 tr

(
X(X⊤X)−1X⊤

)
cov(y, y)

= tr
(
X(X⊤X)−1X⊤

)
= p

df(ŷ) = p, i.e. the number of parameters, assuming
independent feature vectors (i.e. columns of X)

This result holds for p < n
1X(X⊤X)−1X⊤ is the hat matrix H ∈ Rn×n, hence df(ŷ) = rank(H)
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Measures of model complexity - DF

Ridge regression is defined as

θ̂ = argmin
θ

∥y − Xθ∥2
2 + λ ∥θ∥2

2

for some regularization strength λ ≥ 0

The ridge estimator has

df(ŷ) =
p∑
j=1

d2
j

d2
j + λ

degrees of freedom, where (dj)j are the singular values of X

Increasing λ decreases model complexity
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Measures of model complexity - DF

There is some criticism about used DF as measure of model
complexity [Janson et al., 2015]

In some cases, we also need X to be random
[Luan et al., 2021]

We will see other measures when turning to model selection

10 33



Model selection



Model selection approaches

A measure of accuracy or fit, such as the mean squared error
(MSE), is not enough: Increasing model complexity will
always lead to a better fit

Estimating a model requires to minimize both

▶ in-sample-error (loss on training data), and

▶ out-of-sample-error (generalization error)

Cross-validation (CV) estimates generalization error on
left-out samples2

Traditional statistics: Combine measure of accuracy
(in-sample-error) with a penalty for complexity

2Heavy hyperparameter tuning using CV can lead to overfitting and requires
to select a final holdout set
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Model selection approaches - LOO-CV

Leave-one-out Cross-Validation (LOO-CV) at iteration
i = 1, 2, . . . ,n:

▶ Compute estimate on data set without the i-th sample

▶ Compute prediction error on the i-th sample

Report the average prediction error over all n samples

PRESS statistic (predicted residual error sum of squares):

PRESS =
n∑
i=1

(yi − ŷ−i)2

where ŷ−i is the prediction for the i-th sample where the
model has been estimated on all but the i-th sample
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Model selection approaches - PRESS

LOO-CV is very costly for large data sets and complex models

k-fold CV with k = 5 or k = 10 is often used in practice

For (ridge) linear regression with mean squared error we can
efficiently compute LOO-CV [Cook, 1977]

PRESS =
n∑
i=1

(yi − ŷ−i)2

=
n∑
i=1

(yi − ŷi)2

(1 − Hii)2

The matrix
H = X(X⊤X + λI)−1X⊤

is called the hat matrix, because it puts a hat on y, i.e. ŷ = Hy
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Model selection approaches

LOO-CV is computationally very expensive

k-fold CV is cheaper, but uses a large fraction of the data for
testing

Model performance could be better if this data was used for
training

Overfitting if we use CV for testing too many models
(requires final hold out data)

Can we do model selection by using all data for training?

14 33



Model selection approaches - DF

Assume again the following model

Y = f (X) + ϵ

where X ∈ Rn×p is a fixed set of n predictors and Y ∈ Rn

Setup is very similar to the bias-variance decomposition, but
X is now fixed

Let Yt ∈ Rn a vector of n independent observations and f̂Yt
an estimate on the training set (X,Yt), then [Efron, 1986]

EY,Yt
∥∥∥Y− f̂Yt(X)

∥∥∥2

2︸ ︷︷ ︸
expected prediction error

= EYt
∥∥∥Yt − f̂Yt(X)

∥∥∥2

2︸ ︷︷ ︸
expected training error

+ 2σ2 df(f̂ )
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Model selection approaches - DF

This motivates the following model selection criterium
[Mallows, 2000]∥∥∥yt − f̂yt(X)

∥∥∥2

2︸ ︷︷ ︸
training error

+ 2σ2 df(f̂ )︸ ︷︷ ︸
complexity penalty

The more complex a model, the larger the penalty

If two models fit the data equally well, we select the simpler
one (Occam’s razor)
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Model selection approaches - Bayes Approach

Assume we have a set of models (mi)i

In a probabilistic setting we evaluate the probability of a
model mi given data x, i.e. using Bayes theorem

pr(mi | x) =
pr(x |mi)pr(mi)∑
j pr(x |mj)pr(mj)

=
pr(x |mi)pr(mi)

pr(x)

We compare two models mi and mj using

pr(mi | x)
pr(mj | x)

=

pr(x |mi)pr(mi)
pr(x)

pr(x |mj)pr(mj)

pr(x)

=
pr(x |mi)pr(mi)

pr(x |mj)pr(mj)

because pr(x) drops
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Model selection approaches - Bayes factor

With a uniform prior over models we arrive at the Bayes
factor [Kass and Raftery, 1995]

pr(x |mi)

pr(x |mj)

Hence, in Bayesian model selection, we evaluate a model m
based on its marginal likelihood

pr(x |m) =

∫
θ
pr(x | θ,m)pr(θ |m)dθ

where θ are the model parameters

The marginal likelihood is often difficult to evaluate, even
numerically!
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Model selection approaches - BIC

The marginal likelihood is tractable only for very simple
models
As an alternative, we use approximations of the marginal
likelihood
The Bayes information criterion (BIC) is such an
approximation. Let x contain n samples and assume that
n≫ p, then

pr(x |m) ≈ exp

{
− 1

2BIC(x;m)

}
BIC(x;m) = −2 log pr(x | θ̂,m) + p log(n)

where θ̂ refers to the maximum likeklihood estimate and p to
the number of parameters
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Model selection approaches - BIC

Let Y and ϵ be two random variables such that Y = f (X) + ϵ

Let fθ̂ denote a maximum likelihood estimate on some
training data

For ϵ∼Normal(0, σ2) the BIC is related to the mean squared
error with complexity penalty

BIC(x;m) =
1
σ2

n∑
i=1

(yi − fθ̂(xi))
2 + p log(n) + Cn

∝ 1
σ2

∥∥y − fθ̂(x)
∥∥2

2 + p log(n)

where Cn is a constant depending on n, which can be
dropped for model comparison
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Model selection approaches - FIC

BIC assumes n≫ p and therefore depends only on the
number of parameters
Fisher Information Approximation (FIA) [Ly et al., 2017]:

pr(x |m) ≈ exp {−FIA(x;m)}

FIA(x;m) = − log pr(x | θ̂,m) +
p
2 log

( n
2π

)
︸ ︷︷ ︸

BIC like term

+ log Cm

Cm =

∫
θ

√
det Im(θ)dθ︸ ︷︷ ︸

Geometric complexity

where Im denotes the Fisher information matrix
Cm is essential if n≫ p is not given
[Cheema and Sugiyama, 2020]
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How do we control model complexity?

Regularization (e.g. ridge regression):

▶ Constrain the feasible set of parameter values

▶ Keep the number of parameters in the model constant, but
allow them to become zero

Number of parameters:

▶ A good approximation of model complexity if n < p

▶ For n > p we saw that the optimization problem has many
solutions

In deep neural networks, the gradient descent method can act
similar to a regularizer

Model complexity can decrease when adding more parameters
(double descent)
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Regularization



lk-penalized Regression

Objective function

ω(θ) = − log prθ(y) (maximum likelihood), or
ω(θ) = ∥y − Xθ∥2

2 (linear regression)

Regularized estimate with ℓk-norm penalty

θ̂ =

argmin
θ

ω(θ)

subject to ∥θ∥kk = Λ

where

∥θ∥k =

 p∑
j=2

|θj|k
1/k

2Remember that we do not regularize the bias or y-intercept θ0
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lk-penalized Regression

Identify saddle points of Lagrangian

L(θ, λ) = ω(θ) + λ(∥θ∥kk − Λ)

In practice, we do not work with Λ, but set λ such that the
classification performance is optimal, i.e. we work with the
Lagriangian

θ̂(λ) = argmin
θ

ω(θ) + λ ∥θ∥kk

At the optimum we must have

∇θ ω(θ) + λ∇θ ∥θ∥kk = 0

i.e. the gradients of ω(θ) and λ ∥θ∥kk must point to opposite
directions
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Regularization - k=2
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Regularization - k=1
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Regularization paths - k=2
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Regularization paths - k=1
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Implicit Regularization and
Double Descent



Implicit Regularization - Double descent
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Implicit Regularization - Double descent

Initial values
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Area of minimizersGD estimate
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Minimum ℓ2-norm estimate - DF
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2Requires a more advanced definition of DF that treats X as random
variable [Luan et al., 2021]
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Implicit regularization
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Figure: Fitting degree d = p− 1 Legendre polynomials. For p > n the
solution with the smallest ℓ2-norm is used.

2Legendre polynomials are quite useful, since their absolute value is
bounded by one.
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Take home messages

Expected performance is the sum of training performance
and model complexity

Complex models require regularization to prevent overfitting

The number of parameters does not correspont to the
complexity of a model

Increasing the number of features can reduce model
complexity if a min-ℓ2-norm estimator is used

If we have complex data and cannot make any assumptions
on the generating process, we might be better off with an
overparametrized model using regularization (success
behind deep learning)
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More references

Akaike information criterion (AIC)
[Akaike, 1974, Cavanaugh and Neath, 2019]

Bayesian information criterion (BIC) [Schwarz, 1978]

Deviance information criterion (DIC)
[Spiegelhalter et al., 2002]

Fisher Information Approximation (FIA) [Rissanen, 1996,
Grünwald, 2007, Cheema and Sugiyama, 2020]

Degrees of freedom (DF)
[Tibshirani, 2015, Gao and Jojic, 2016, Luan et al., 2021]

Implicit regularization and double descent
[Hastie et al., 2022, Luan et al., 2021, Derezinski et al., 2020,
Kobak et al., 2020]
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Reading

Sections 3.4, 7.3, 7.6, 7.7 and 7.9 [Hastie et al., 2009]
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The End

"All models are wrong, but some are useful."
[Moody, 1991]
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