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BIAS-VARIANCE DECOMPOSITION AND
TRADEOFF




BIAS-VARIANCE DECOMPOSITION

m Let Y,X and e be random variables such that Y = f(X) + ¢,
with E[e] = 0 and var[e] = o2

m Assume that fp has been estimated on some training data
D = (X,y), where X is a matrix of n observations from X and y
a vector of n observations from Y

m At a query point x we have

Evp[(Y — fo(x))?] = [Ep fo(x) — F(X)]? + Eplfo(x) — Ep fo(X)]? +02

Bias? Variance

m bias: Is there a bias towards a particular kind of solution
(e.g. linear model)? (inductive bias)

m variance: How much does the estimated model change if you
train on a different data set? (overfitting)




BIAS-VARIANCE DECOMPOSITION
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BIAS-VARIANCE DECOMPOSITION

Total error
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Model complexity

°Note that here we average over multiple data sets. On a single data set we
might observe bumps when increasing model complexity



BIAS-VARIANCE DECOMPOSITION

Error

Test set

Training set

Model complexity

°Note that here we average over multiple data sets. On a single data set we
might observe bumps when increasing model complexity



BIAS-VARIANCE DECOMPOSITION - LESSIONS LEARNED

m Every model comes with a bias
m More complex models have a smaller bias but larger variance

m A bias is required to reduce the variance, but introducing a
good bias requires domain knowledge

m Classical statistics often uses unbiased estimators, which is
nowadays often questioned

m Keep in mind: There is no free lunch!’

"The no free lunch theorem [Wolpert and Macready, 1997] tells us that there
exists no generic model that works well on all domains, but we need to tailor
our models to the data at hand in order to introduce a model bias, which
reduces variance.




COMPLEXITY MEASURES




COMPLEXITY OF CLASSIFIERS - VC DIMENSION

VC-Dimension (Vapnik Chervonenkis)

Let Fp be a set of classifiers on an n-dimensional input space.
The VC-dimension VC(F)) is defined as the maximum number of
points that can be correctly classified by at least one member of
Fp.

m Examples:

» Linear classifier on RP: VC = p +1
» SVM with RBF kernel: VC = oo

» Neural network with n, edges, n, nodes and sigmoid
activation function: Q(n2) < VC < O(n2n2)
[Shalev-Shwartz and Ben-David, 2014, Section 20.4]




COMPLEXITY OF CLASSIFIERS - VC DIMENSION
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MEASURES OF MODEL COMPLEXITY - DF

Degrees of Freedom (DF) [Efron, 1986]

The degrees of freedom of an estimate § = f(X) is defined as

n
& 1 & 1 &
df(y) = = E cov(¥;, i) = ;’UCOV(% y),
i=1

where
m X denotes a fixed set of n covariates of dimension p
mYy=(y,...,Yn)is avector of n observations from

Y=Ff(X)+e

for some function f, assuming E[¢] = 0 and var[e] = o2

'df is normalized by the magnitude of the aleatory uncertainty (o2)



MEASURES OF MODEL COMPLEXITY - DF

m Degrees of freedom for the OLS estimate:

1 X
df(y) = = trcov(y,y)
_ e (X(XTX)_1XTY Y)
02 ’
1 ~
= (XXTX)7XT) cov(y,y)
—tr (X(XTX)_1XT)
=p

m df(y) = p, i.e. the number of parameters, assuming
independent feature vectors (i.e. columns of X)

m This result holds forp < n

X(XTX)7'XT is the hat matrix H € R"*", hence df(j) = rank(H)




MEASURES OF MODEL COMPLEXITY - DF

m Ridge regression is defined as

0 = argmin |ly — X602 + X [|0]3
0

for some regularization strength A > 0

m The ridge estimator has

degrees of freedom, where (d;); are the singular values of X

m Increasing \ decreases model complexity

9



MEASURES OF MODEL COMPLEXITY - DF

m There is some criticism about used DF as measure of model
complexity [Janson et al., 2015]

m In some cases, we also need X to be random
[Luan et al., 2021]

m We will see other measures when turning to model selection




MODEL SELECTION




MODEL SELECTION APPROACHES

m A measure of accuracy or fit, such as the mean squared error
(MSE), is not enough: Increasing model complexity will
always lead to a better fit

m Estimating a model requires to minimize both

» in-sample-error (loss on training data), and

» out-of-sample-error (generalization error)

m Cross-validation (CV) estimates generalization error on
left-out samples?

m Traditional statistics: Combine measure of accuracy
(in-sample-error) with a penalty for complexity

2Heavy hyperparameter tuning using CV can lead to overfitting and requires
to select a final holdout set




MODEL SELECTION APPROACHES - LOO-CV

m Leave-one-out Cross-Validation (LOO-CV) at iteration
i=12,...,n

» Compute estimate on data set without the i-th sample

» Compute prediction error on the i-th sample
m Report the average prediction error over all n samples

m PRESS statistic (predicted residual error sum of squares):

n

PRESS = Y (yi —§_i)?

i=1

where y_; is the prediction for the i-th sample where the
model has been estimated on all but the i-th sample




MODEL SELECTION APPROACHES - PRESS

m LOO-CV is very costly for large data sets and complex models
m R-fold CV with k = 5 or k = 10 is often used in practice

m For (ridge) linear regression with mean squared error we can
efficiently compute LOO-CV [Cook, 1977]

n

PRESS = Y (yi —§_i)?

i=1
-y
i=1 l
m The matrix
H=XX"X+X)"x"

is called the hat matrix, because it puts a haton y, i.e. y = Hy



MODEL SELECTION APPROACHES

m LOO-CV is computationally very expensive

m R-fold CV is cheaper, but uses a large fraction of the data for
testing

m Model performance could be better if this data was used for
training

m Overfitting if we use CV for testing too many models
(requires final hold out data)

m Can we do model selection by using all data for training?




MODEL SELECTION APPROACHES - DF

m Assume again the following model
Y=Ff(X)+e
where X € R"™P is a fixed set of n predictors and Y € R"

m Setup is very similar to the bias-variance decomposition, but
X is now fixed

m Let Y; € R" a vector of n independent observations and fyt
an estimate on the training set (X, Yy), then [Efron, 1986]

Evy, ||Y — fv.(X)

2
2

Y~ fu )| + 202 df(F)

expected prediction error  expected training error




MODEL SELECTION APPROACHES - DF

m This motivates the following model selection criterium
[Mallows, 2000]

P 2 P
lve=Fux)| o+ 20%df(f)
2 N—_——
~—_—— -
training error complexity penalty

m The more complex a model, the larger the penalty

m If two models fit the data equally well, we select the simpler
one (Occam’s razor)



MODEL SELECTION APPROACHES - BAYES APPROACH

m Assume we have a set of models (m;);

m In a probabilistic setting we evaluate the probability of a
model m; given data x, i.e. using Bayes theorem

gy pr(x[mj)pr(m;)  pr(x|m;)pr(m;)
pr(mi 1) = S~k I mpe(m) — pro)

m We compare two models m; and m; using

pr(x | m;)pr(m;)

pr(mi|X) _ g _ pr(x|mj)pr(m;)
pr(m;[x) ~ prx| mé)I;r(mj) pr(x | m;)pr(m;)
pr(x

because pr(x) drops



MODEL SELECTION APPROACHES - BAYES FACTOR

m With a uniform prior over models we arrive at the Bayes
factor [Kass and Raftery, 1995]

pr(x|m;)
pr(x [ m;)

m Hence, in Bayesian model selection, we evaluate a model m
based on its marginal likelihood

pr(x|m) = /epr(x |6, m)pr(6| m)dé

where 6 are the model parameters

m The marginal likelihood is often difficult to evaluate, even
numerically!




MODEL SELECTION APPROACHES - BIC

m The marginal likelihood is tractable only for very simple
models

m As an alternative, we use approximations of the marginal
likelihood

m The Bayes information criterion (BIC) is such an
approximation. Let x contain n samples and assume that
n > p, then

pr(x|m) ~ exp {—;BIC(X; m)}
BIC(x; m) = —2log pr(x | A, m) + plog(n)

where 0 refers to the maximum likeklihood estimate and p to
the number of parameters



MODEL SELECTION APPROACHES - BIC

m Let Y and ¢ be two random variables such that Y = f(X) + ¢

m Let f; denote a maximum likelihood estimate on some
training data

m For e ~ Normal(0, o2) the BIC is related to the mean squared
error with complexity penalty

n

BIC(Gm) = — > (0 =fs6)* + p log(m) + C;

—Hy f(0)|[ + plog(n)

where C, is a constant depending on n, which can be
dropped for model comparison



MODEL SELECTION APPROACHES - FIC

m BIC assumes n >> p and therefore depends only on the
number of parameters

m Fisher Information Approximation (FIA) [Ly et al., 2017]:

pr(x|m) ~ exp {—FIA(x; m)}

A n
FIA(x; m) = — log pr(x | &, m) + g log (E) + log Crm

BIC like term
%

Geometric complexity

where Z,, denotes the Fisher information matrix

m Cp is essential if n > p is not given
[Cheema and Sugiyama, 2020]




HOwW DO WE CONTROL MODEL COMPLEXITY?

m Regularization (e.g. ridge regression):
» Constrain the feasible set of parameter values

» Keep the number of parameters in the model constant, but
allow them to become zero

m Number of parameters:

> A good approximation of model complexity if n < p

» For n > p we saw that the optimization problem has many
solutions

m In deep neural networks, the gradient descent method can act
similar to a regularizer

m Model complexity can decrease when adding more parameters
(double descent)




REGULARIZATION




[,-PENALIZED REGRESSION

Objective function

w(f) = —logpry(y) (maximum likelihood), or
w(®) = |ly —X0|>  (linear regression)

Regularized estimate with /,-norm penalty

arg min w(6)
G
subject to H9||£ =A

p 1/R
101l = (29jk>
j=2

*Remember that we do not regularize the bias or y-intercept 6,

where




[,-PENALIZED REGRESSION

Identify saddle points of Lagrangian

L£(0,)) = w(®) + A(l6]l§ — A)

In practice, we do not work with A, but set A such that the
classification performance is optimal, i.e. we work with the
Lagriangian

A~

O(N\) = argminw(f) + A HHHﬁ
0

At the optimum we must have
Vo w(8) + AV ||k = 0

i.e. the gradients of w(#) and A He”ﬁ must point to opposite
directions




Penalty minimum

2%

REGULARIZATION - K




REGULARIZATION - K=1

Total minimum

Penalty minimum




REGULARIZATION PATHS - K=2




REGULARIZATION PATHS - K=1




IMPLICIT REGULARIZATION AND
DOUBLE DESCENT




IMPLICIT REGULARIZATION - DOUBLE DESCENT

Interpolation
i threshold

Error

Test set

Training set

Number of parameters



IMPLICIT REGULARIZATION - DOUBLE DESCENT

Initial values L~ GD estimate Area of minimizers
®

6,




MINIMUM /,-NORM ESTIMATE - DF
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2Requires a more advanced definition of DF that treats X as random
variable [Luan et al., 2021]




IMPLICIT REGULARIZATION

p=8 p=100

p = 1000

Figure: Fitting degree d = p — 1 Legendre polynomials. For p > n the
solution with the smallest /,-norm is used.

’Legendre polynomials are quite useful, since their absolute value is
bounded by one.



TAKE HOME MESSAGES

m Expected performance is the sum of training performance
and model complexity

m Complex models require regularization to prevent overfitting

m The number of parameters does not correspont to the
complexity of a model

m Increasing the number of features can reduce model
complexity if a min-¢,-norm estimator is used

m If we have complex data and cannot make any assumptions
on the generating process, we might be better off with an
overparametrized model using regularization (success
behind deep learning)



MORE REFERENCES

m Akaike information criterion (AIC)
[Akaike, 1974, Cavanaugh and Neath, 2019]

m Bayesian information criterion (BIC) [Schwarz, 1978]

m Deviance information criterion (DIC)
[Spiegelhalter et al., 2002]

m Fisher Information Approximation (FIA) [Rissanen, 1996,
Griinwald, 2007, Cheema and Sugiyama, 2020]

m Degrees of freedom (DF)
[Tibshirani, 2015, Gao and Jojic, 2016, Luan et al., 2021]

m Implicit regularization and double descent
[Hastie et al., 2022, Luan et al., 2021, Derezinski et al., 2020,
Kobak et al., 2020]




READING

m Sections 3.4, 7.3, 7.6, 7.7 and 7.9 [Hastie et al., 2009]




" All models are wrong, but some are useful.”
[Moody, 1991]
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