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Motivation

Feature selection problem

θ̂ =

argmin
θ

∥y − Xθ∥2
2

subject to ∥θ∥0 = m
with

( p
m

)
possible subsets

Required are computationally efficient methods to
approximate the feature selection problem

Offline methods: Select features before estimating
parameters

Online methods: Features are selected during parameter
estimation
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Feature selection methods

Offline methods:

▶ Safe and Strong rules

▶ Sure independence screening (SIS)

▶ Estimation of mutual information

Online methods:

▶ (Orthogonal) matching pursuit

▶ Least angle regression (LARS) / Homotopy algorithm

▶ Penalty methods
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Linear Regression - recap

y = Xθ + ϵ
y1
y2
...

yn

 =


x(1)1 x(2)1 . . . x(p)1
x(1)2 x(2)2 . . . x(p)2

...
... . . . ...

x(1)n x(2)n . . . x(p)n



θ1
θ2
...
θp

+


ε1
ε2
...
εn



response : y ∈ Rn

covariates : X ∈ Rn×p

coefficients : θ ∈ Rp

residuals : ϵ ∈ Rn
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Linear regression - recap

Geometric interpretation of ordinary least squares
[Hastie et al., 2009]:

θ̂ = argmin
θ
∥ϵ∥2

2

= argmin
θ
∥y − Xθ∥2

2

f1

f2

X = [f1, f2]

Rn (n = 3)

ŷ = Xθ̂

y

ε
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Sure Independence Screening
(SIS)



Sure independence screening (SIS)

Consider the case of ultrahigh-dimensional data, where the
number of features p is much larger than the number of
observations n

Specifically, we assume that p is so large that we cannot
compute an estimate of θ

Assuming θ is sparse, we can first select a promising subset
of q features Mq (called feature screening)

The coefficients θ are estimated based on the subset Mq
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Sure independence screening (SIS)

Consider the solution of rigde regression:

θ̂(λ) = (X⊤X + λI)−1X⊤y

For λ→ 0 we obtain the OLS solution

For λ→∞ it follows that λθ̂(λ) converges to the
componentwise regression estimator

θ̂k(λ) = X̃⊤y

where X̃ is the data matrix X with normalized columns fj such
that f⊤j fj = 1

Traditionally, for very large p we would select λ large in
order to decrease the variance of θ̂
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Sure independence screening (SIS)

X̃⊤y = (f⊤1 y, . . . , f⊤p y) can be interpreted as the correlation of
features fj with y

Sure independence screening (SIS) [Fan and Lv, 2008] selects
a subset of features

Ω =
{

j
∣∣∣ |f⊤j y| > t

}
(1)

based on their correlation with y, where t is a threshold such
that |Ω| = q < p

The OLS estimate θ̂ is computed using only the selected
features Ω

All remaining components of θ̂ are set to zero
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Sure independence screening (SIS)

The same idea can be applied to more complex models
[Fan and Song, 2010], such as logistic regression, where

θ̂ = argmax
θ

prθ(y | X)

Select a subset of features

Ω =
{

j
∣∣ score(fj, y) > t

}
(2)

The score is given by the independent estimate

score(fj, y) = argmax
θj

prθj
(y | fj)

for all j = 1, . . . ,p
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Matching Pursuit for Linear Re-
gression



Matching Pursuit for linear regression

Feature selection problem

θ̂ =

argmin
θ

∥y − Xθ∥2
2

subject to ∥θ∥0 = m
with

( p
m

)
possible subsets

Matching Pursuit
Greedy approximation to feature selection problem.

If we must represent y with only one feature, which one should
we take?

j1 = argmin
j

∥∥∥y − fjθ̂j

∥∥∥2

2
, where θ̂j = argmin

θj

∥∥y − fjθj
∥∥2

2
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Matching Pursuit for linear regression

j1 = argmin
j

∥∥∥y − fjθ̂j

∥∥∥2

2
, where θ̂j = argmin

θj

∥∥y − fjθj
∥∥2

2

= argmax
j

(f⊤j y)2

f⊤j fj

= argmax
j

∣∣∣f⊤j y
∣∣∣

[assuming normalized data, i.e. f⊤j fj = 1]

⇒ select feature j with maximal scalar projection of y onto fj
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Matching Pursuit for linear regression

ϵ = y − Xθ
= y︸︷︷︸

r0

− fj1θj1︸ ︷︷ ︸
r1

− fj2θj2

︸ ︷︷ ︸
r2

− . . . − fjpθjp

j1 = argmin
j

∥∥∥y − fjθ̂j

∥∥∥2

2
= argmin

j

∥∥∥r0 − fjθ̂j

∥∥∥2

2

= argmax
j

∣∣∣f⊤j r0

∣∣∣

j2 = argmin
j

∥∥∥y − fj1 θ̂j1 − fjθ̂j

∥∥∥2

2
= argmin

j

∥∥∥r1 − fjθ̂j

∥∥∥2

2

= argmax
j

∣∣∣f⊤j r1

∣∣∣
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Matching Pursuit for linear regression

ϵ = y − Xθ
= y︸︷︷︸

r0

− fj1θj1︸ ︷︷ ︸
r1

− fj2θj2

︸ ︷︷ ︸
r2

− . . . − fjpθjp

j1 = argmin
j

∥∥∥y − fjθ̂j
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= argmin

j

∥∥∥r0 − fjθ̂j

∥∥∥2

2

= argmax
j

∣∣∣f⊤j r0

∣∣∣
j2 = argmin

j

∥∥∥y − fj1 θ̂j1 − fjθ̂j

∥∥∥2

2
= argmin

j

∥∥∥r1 − fjθ̂j

∥∥∥2

2

= argmax
j

∣∣∣f⊤j r1

∣∣∣
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Matching Pursuit for linear regression

Matching pusuit (MP) [Tropp et al., 2007]
The MP feature selection rule is given by

jk = argmax
j

∣∣∣f⊤j rk−1

∣∣∣ k = 1, . . . ,m

where rk are the residuals at step k:

ϵ = y − Xθ
= y︸︷︷︸

r0

− fj1θj1︸ ︷︷ ︸
r1

− fj2θj2

︸ ︷︷ ︸
r2

− . . . − fjpθjp
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Matching Pursuit for linear regression

Orthogonal Matching Pursuit
Orthogonal Matching Pursuit: Re-estimate parameters after
every iteration.

After every iteration t, update all θΩt entries, where
Ωt = {j1, j2, . . . , jt}, i.e. compute

θΩt = argmin
θ
∥yΩt − XΩtθ∥2

2 .

This update changes the residuals

rt = y − fj1θj1 − fj2θj2 − · · · − fjtθjt

used in the next iteration of the algorithm.
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Matching Pursuit for Logistic Re-
gression



Logistic Regression


prθ(y1 = 1)
prθ(y2 = 1)

...
prθ(yn = 1)

 = σ




x(1)1 x(2)1 . . . x(p)1
x(1)2 x(2)2 . . . x(p)2

...
... . . . ...

x(1)n x(2)n . . . x(p)n



θ1
θ2
...
θp




class labels : y ∈ {0, 1}n

covariates : X ∈ Rn×p

coefficients : θ ∈ Rp
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Logistic Regression

Parameter estimation for logistic regression:

θ̂ = argmax
θ

prθ(y) ≈ argmin
θ
∥y − σ(Xθ)∥2

2 [but not convex]

= argmax
θ

n∑
i=1

log prθ(yi)

= argmax
θ

n∑
i=1

{yi log σ(xiθ) + (1− yi) log(−xiθ)}

= argmax
θ

n∑
i=1

log σ(ỹixiθ) ,

where ỹi = 2yi − 1 ∈ {−1, 1}
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Matching Pursuit for Logistic Regression

Pseudo-residuals

rk = y − σ(fj1θj1 + fj2θj2 + · · ·+ fjkθjk)

X⊤rp = ∇ log prθ(y)

j1 = argmin
j

∥∥∥y − σ(fjθ̂j)
∥∥∥2

2

≈ argmax
j

∣∣∣f⊤j r0

∣∣∣
j2 = argmin

j

∥∥∥y − σ(fj1 θ̂j1 − fjθ̂j)
∥∥∥2

2

≈ argmax
j

∣∣∣f⊤j r1

∣∣∣
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Matching Pursuit for Logistic Regression

Matching pursuit feature selection rule [Lozano et al., 2011]
Assuming normalized data, i.e. f⊤j fj = 1, the OMP rule is given by

jk = argmax
j

∣∣∣f⊤j rk−1

∣∣∣
where rk are the kth pseudo-residuals

rk = y − σ(fj1θj1 + fj2θj2 + · · ·+ fjkθjk)

X⊤rp = ∇ log prθ(y)

OMP Performance
Greedy strategy causes poor performance of Orthogonal
Matching Pursuit in practice
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Least Angle Regression (LARS)



Least Angle Regression (LARS)

Consider ℓ1-penalized linear regression (LASSO) where

θ̂(λ) = argmin
θ
∥y − Xθ∥2

2 + λ ∥θ∥1

There exists a regularization strength λ = λmax for which all
estimated coefficients are zero

Least Angle Regression (LARS) [Efron et al., 2004] is a
method to efficiently compute θ̂(λ) for all 0 ≤ λ ≤ λmax

LARS computes breakpoints λk at which individual
coefficients θ̂j(λk) ∈ R change its value from

▶ zero to non-zero, or from

▶ non-zero to zero

Between breakpoints the values of coefficients can be
linearly interpolated
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Least Angle Regression (LARS)

Remember that the OLS solution θ̂(0) for λ = 0 requires that

∇θ ∥y − Xθ∥2
2 = 2X⊤(y − Xθ) = 0

For λ > 0 the solution requires

X⊤(y − Xθ) ∈ λ
2∂ ∥θ∥1

where ∂ ∥θ∥1 is the subgradient with respect to θ

We define
c(θ) = X⊤(y − Xθ)

which is interpreted as the correlation of features
X = [f1, f2, . . . , fp] with the residuals ϵ = y − Xθ
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Least Angle Regression (LARS)

The correlation ĉ(λ) = c(θ̂(λ)) varies with λ as follows:

▶ ĉ(λ) = cmax for λ = λmax

▶ ĉ(λ) = 0 for λ = 0

f1

f2

X = [f1, f2]

Rn (n = 3)

ŷ = Xθ̂

y

ε
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Least Angle Regression (LARS)

LARS maintains a set of active features Ω ⊂ {1, . . . ,p} all
equally correlated with the residuals y − Xθ̂(λ) for the
current estimate θ̂(λ)

Let XΩ = (fj)j∈Ω denote the covariate matrix and θΩ = (θj)j∈Ω
the coefficients restricted to the features in the active set Ω

In each iteration, the coefficients θ are updated

θ ← θ + γ∗v ,

where γ∗ is the amount by which the correlation cΩ(θ) is
reduced and v ∈ Rp defines the direction and relative size of
the update
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Least Angle Regression (LARS)

The vector v is selected so that for features in Ω the
difference in correlation cΩ(θ)− cΩ(θ + γv) shrinks uniformly
towards zero with rate γ, i.e.

cΩ (θ)− cΩ (θ + γv) = γ sign cΩ(θ) , while
cΩc(θ)− cΩc(θ + γv) = 0 .

Both conditions can be combined into

c(θ)− c(θ + γv) = γ sign c(θ) ,

since sign cΩc(θ) = 0

It follows that
vΩ = [X⊤

ΩXΩ]
−1 sign cΩ(θ)

and vΩc = 0
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Least Angle Regression (LARS)

LARS stop shrinking the correlations whenever:
▶ Case 1: A non-active feature becomes equally correlated with

the residuals
▶ Case 2: A coefficient of an active feature becomes zero1

Case 1: More formally, γ is increased until some feature
j′ ∈ Ωc outside the active group satisfies

|cj′(θ + γv)| = |cj(θ + γv)|
= λ− γ ,

where j ∈ Ω, and λ = |cj(θ)| is the absolute correlation of the
active features

1This case was not part of the initial LARS algorithm but was later on added
in order to ensure equivalence with the LASSO (see also Homotopy
algorithm [Osborne et al., 2000])
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Least Angle Regression (LARS)

The solution is given by

γ+ = min+

j∈Ωc

{
λ− cj(θ)

1− f⊤j Xv
,
λ+ cj(θ)

1 + f⊤j Xv

}
,

where min+ is the minimum over positive elements and note
that f⊤j Xv = f⊤j XΩvΩ

Case 2: The algorithm also removes a feature j from the
active set when for some γ

θj + γvj = 0

so that γ− = minj∈Ω{−θj/vj}

The subsequent breakpoint is given by γ∗ = min{γ+, γ−}
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SAFE and Strong Rules



ℓ1-penalized regression

Penalized regression

ω(θ) = − log prθ(y) (logistic regression), or
ω(θ) = ∥y − Xθ∥2

2 (linear regression)

θ̂ =

argmin
θ

ω(θ)

subject to ∥θ∥1 = Λ

Basic idea: Select Λ such that ∥θ∥0 = m
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ℓ1-penalized regression

Numerical solution of penalized regression
Identify saddle points of Lagrangian

L(θ, λ) = ω(θ) + λ(∥θ∥1 − Λ)

In practice the constraint ∥θ∥1 = Λ is ignored, but λ is chosen
such that classification performance is optimal:

Penalized regression in practice

θ̂(λ) = argmin
θ

ω(θ) + λ ∥θ∥1
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SAFE Rule for linear regression

SAFE rule: What features can we neglect for a fixed λ?

SAFE rule [Ghaoui et al., 2010, Kim et al., 2007] for
ℓ1-penalized linear regression
jth component of θ̂ must be zero if

|f⊤j y| < λ−
∥∥fj

∥∥
2 ∥y∥2

λmax − λ

λmax

λmax = max
j
|f⊤j y|

|f⊤j (y − Xθ︸︷︷︸
θ=0

)| < λ−
∥∥fj

∥∥
2 ∥y∥2

λmax − λ

λmax
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Strong Rule for linear regression

SAFE rule for linear regression: jth component of θ̂ must be zero if

|f⊤j y| < λ−
∥∥fj

∥∥
2 ∥y∥2

λmax − λ

λmax

λmax = max
j
|f⊤j y|

Strong rule for ℓ1-penalized linear regression
[Tibshirani et al., 2012]
Discard jth component if

|f⊤j y| < λ− (λmax − λ) = 2λ− λmax

λmax = max
j
|f⊤j y|
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Strong Rule for linear regression

Strong rule for ℓ1-penalized linear regression
[Tibshirani et al., 2012]
Discard jth component if

|f⊤j y| < λ− (λmax − λ) = 2λ− λmax

λmax = max
j
|f⊤j y|

Remark
Strong rule may drop features that should not be discarded⇒
KKT conditions must be checked, i.e.

X⊤(y − Xθ̂) ∈ λ∂θ=θ̂ ∥θ∥1

29 31



Strong sequential rule for linear regression

Strong rule for ℓ1-penalized linear regression
[Tibshirani et al., 2012]
Discard jth component if

|f⊤j y| < λ− (λmax − λ) = 2λ− λmax

λmax = max
j
|f⊤j y|

Strong sequential rule for ℓ1-penalized linear
regression[Tibshirani et al., 2012]
Discard jth feature if

|f⊤j {y − σ(Xθ̂(λk−1))}| < 2λk − λk−1
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Strong Sequential Rule for linear regression

Compute θ̂(λk) for all λ1 > · · · > λk > · · · > λK

λ

f>j (y −Xθ)

•

λk

•

λk−1

λk − (λk−1 − λk)

θ̂(λk)j 6= 0 ⇒
f>j (y −Xθ̂(λk)) = λk

Assumption : |f⊤j (y − Xθ̂(λk−1 − ϵ))− f⊤j (y − Xθ̂(λk−1))| ≤ ϵ

⇒ |f⊤j (y − Xθ̂(λk−1))| < 2λk − λk−1
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Derivation of the SAFE Rule
for linear regression

θ̂ = argmin
θ
∥y − Xθ∥2

2 + λ ∥θ∥1

Define
β = y − Xθ

Equivalent optimization problem

θ̂ =

argmin
θ

β⊤β + λ ∥θ∥1

subject to β = y − Xθ



Derivation of the SAFE Rule
for linear regression

Lagrangian

L(θ, β, ν) = β⊤β + λ ∥θ∥1 + ν⊤(y − Xθ − β)

Dual function

inf
θ,β
L(θ, β, ν) =

{
G(ν) if |f⊤j ν| ≤ λ , j = 1, . . . ,p
−∞ otherwise

where G(ν) = − 1
4ν

⊤ν + ν⊤y. Lagrange dual

θ̂∗ =

argmax
ν

G(ν)

subject to |f⊤j ν| ≤ λ , j = 1, . . . ,p



Derivation of the SAFE Rule
for linear regression

Side note: Since the primal problem satisfies Slater’s condition,
we know that the duality gap γ = θ̂ − θ̂∗ is zero, i.e.

θ̂ = θ̂∗

For a dual feasible point ν0, we solve for each j = 1, . . . ,p

ξj(ν0) =

argmax
ν

|f⊤j ν|

subject to G(ν) ≥ G(ν0)

= |f⊤j y|+
√
(y⊤y − 2G(ν0))f⊤j fj

If ξj(ν0) < λ we know that θ̂j = 0. A simple dual feasible point is
ν0 = yλ/λmax. The SAFE rule is obtained from

ξj(yλ/λmax) < λ



Logistic Regression Classifier

SAGA algorithm [Defazio et al., 2014]: select j ∈ {1, . . . ,n} at
random

ϑj,t+1 = θt

ϑi,t+1 = ϑi,t+1 for all i ̸= j

θ∗t+1 = θt − γ

[
∇ℓj(ϑj,t+1)−∇ℓj(ϑj,t) +

1
n

n∑
i=1

∇ℓi(ϑi,t)

]

θt+1 = argmin
θ

{
λ∥θ∥1 +

1
2γ ∥θ − θ∗t+1∥2

2

}
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