
Machine Learning in Bioinformatics
Graph Neural Networks

Philipp Benner
philipp.benner@bam.de

VP.1 - eScience
Federal Institute of Materials Research and Testing (BAM)

April 25, 2024

Graph data

1 29

Outline

Graph Convolutional Neural Networks (GCNN)

General graph neural networks (GNN)

Graph isomorphisms and discriminative power of GNNs

Advanced models and applications

2 29

Graph Convolutional Neural
Networks (GCNNs)

Graph convolutions

Convolutions are not only restricted to image and
time-series data

Graph convolutions are used to model the interaction
between nodes

Let G = (N, E) denote a graph with nodes N and edges E

How could we implement a convolution of G with a weight
matrix W?

The result of a convolution is again a graph1, i.e.

G′ = G ∗W

1Remember that convolution on images also returns an image
3 29

Graph convolutions

Graph G with 5 nodes and 5 edges:

We assign a feature vector xi ∈ Rp to the i-th node

The feature vector can depend on the type of the node

Nodes of the same type might share the same feature vector

4 29

Graph convolutions

Graph G with 5 nodes and 5 edges:

x1

x2

x3

x5

x4

We assign a feature vector xi ∈ Rp to the i-th node

The feature vector can depend on the type of the node

Nodes of the same type might share the same feature vector

4 29

Graph convolutions

Let A = (aij)ij ∈ Rk×k denote the adjacency matrix of a graph
with k nodes
The strength of the connection between node i and j is given
by aij
Self-connections aii ̸= 0 allow to incorporate the features of
the nodes itself
The convolution operation updates the feature vector of
node i by summing over all neighbor nodes, i.e.

x′i = σ

∑
j

aijWxj

 = σ

∑
j→i

Wxj

where W ∈ Rp×p and σ is the activation function2

2Graph convolutions are permutation equivariant
5 29

Graph convolutions

For the full graph we obtain

X′︸︷︷︸
k×p

= σ(A︸︷︷︸
k×k

X︸︷︷︸
k×p

W⊤︸︷︷︸
p×p

)

where X ∈ Rk×p is the matrix of k feature vectors
Note that the weight matrix W does not depend on the size
and connectivity of the graph
W can be applied to multiple graphs and optimized during
training of the graph convolutional neural network (GCNN)
GCNNs typically apply multiple convolutions and afterwards
compute summary statistics of the feature vectors, the result
can then be used in a conventional neural network

2Many extensions and generalizations exist
[Battaglia et al., 2018, Dwivedi et al., 2020]

6 29

GCNN
Generalizated Update Rules

Graph convolutions - Self-connections

Graph convolutional networks as introduced so far, can be
efficiently computed, but are limited in their expressive
power
The same weight matrix W is used for all nodes
A simple extension is to introduce a separate weight matrix
V for self-connections

x′i = σ

Vxi +∑
j→i

Wxj

Note that now the sum over {j→ i} should not include any
self-connections

7 29

Graph convolutions - Edge gates

Another important generalization are edge gates
[Marcheggiani and Titov, 2017]
Edge gates allow the network to learn what edges are
important for the graph learning task
The update function is given by

x′i = σ

∑
j→i

ηij ⊙Wxj

where ⊙ denotes the element-wise multiplication
(Hadamard product)
The ηij ∈ Rp act as edge gates and are computed as

ηij = σ
(
Axi + Bxj

)
8 29

Graph convolutions - Edge features

Even more general are networks that contain separate
features on edges [Joshi et al., 2019]
Node features and edge features eij between nodes i and j
are updated as follows

x′i = σ

∑
j→i

ηij ⊙Wxj

e′ij = σ

(
Axi + Bxj + Ceij

)
ηij =

σ(eij)∑
k σ(eik) + ϵ

Note that ηij is a normalized version of σ(eij)

9 29

Graph Neural Networks
(GNNs)

Permutation equivariance on graphs

Let X ∈ Rk×p be the feature matrix of a graph G with k nodes

Let φG(X) denote the result of applying a graph neural
network φG to X

τ(G, X) denotes a row-permutation of X with corresponding
relabeling of nodes in G

We require that φG is equivariant with respect to τ
(permutation equivariant), i.e.

(G, X) (G, Y)

(G′, X′) (G′, Y′)

φG

τ τ

φG′

10 29

Graph neural networks (GNNs)

Three types of GNNs:
Convolution, Attention, Message passing

Update rule of GNNs [Bronstein et al., 2021]

x′i = ϕ

xi,⊕
j→i

ψ(xi, xj)

where

⊕
is a permutation invariant aggregation function, ϕ and

ψ are learnable functions

11 29

Graph neural networks - GCNNs

General update formula of GNNs [Bronstein et al., 2021]:

x′i = ϕ

xi,⊕
j→i

ψ(xi, xj)

where

⊕
is a permutation invariant aggregation function

GCNNs are an instance of GNNs, because

x′i = ϕ

xi,⊕
j→i

ψ(xi, xj)

 = σ

Vxi +∑
j→i

Wxj

where ϕ(xi, z) = σ(Vxi + z),

⊕
=

∑
, and ψ(xi, xj) = Wxj

12 29

Graph neural networks - Self-attention

General update formula of GNNs [Bronstein et al., 2021]:

x′i = ϕ

xi,⊕
j→i

ψ(xi, xj)

where

⊕
is a permutation invariant aggregation function

Self-attention layers are characterized by

ψ(xi, xj) = a(xi, xj)ψ′(xj)

where a denotes the attention mechanism that computes
the similarity between xi and xj [Veličković et al., 2017]

The message ψ′(xj) from node j is weighted by the attention
value a(x⊤i , xj)

13 29

Graph neural networks - Message passing

General update formula of GNNs [Bronstein et al., 2021]:

x′i = ϕ

xi,⊕
j→i

ψ(xi, xj)

where

⊕
is a permutation invariant aggregation function

The most general version of GNNs are message passing
networks, where ψ is a neural network itself. The message
received by node i is computed from both the feature
vectors of node i and j [Gilmer et al., 2017]

14 29

Disciminative Power of GNNs

Graph isomorphism

Graph isomorphism
Let G and H be two graphs with vertex sets V(G) and V(H). A
graph isomorphism f between G and H is defined as a function
f : V(G) 7→ V(H) such that for all vertices u, v adjacent in G it
follows that f (u) and f (v) are adjacent in H.

Two graphs are called isomorphic if there exists a graph
isomorphism

Finding graph isomorphisms is difficult, i.e. for a graph with n
nodes we have to test n! node permutations

Weisfeiler-Lehman Isomorphism Test can be used as a
computationally fast heuristic

15 29

Graph isomorphism

Weisfeiler-Lehman Isomorphism Test (1-WL)
[Weisfeiler and Leman, 1968]
For both graphs G and H, assign each node i an initial node color
xi = 1. Within each iteration, the node color is updated using a
given hash function according to the update rule

xi ← hash
(
xi,

{{
xj | j→ i

}})
,

where {{ · }} denotes a multiset. The hash function maps the
current node color and the multiset of neighboring node colors
to a new node color from a discrete set.
Nodes are partitioned according to their colors. The algorithm
terminates if node partitions are stable. G and H pass the test if
nx(G) = nx(H) for all x, where nx(G) =

∑
i∈G 1x=xi is the number of

occurrences of color x [Huang and Villar, 2021].

16 29

Graph isomorphism

Note that the feature vectors xi might never become stable,
however, the node partitions will

The Weisfeiler-Lehman Isomorphism Test has limited power

▶ { Test fails }→ graphs are not isomorphic

▶ Some graphs that pass the test are not isomorphic

Example of non-isomorphic graphs that pass the test:

17 29

Graph isomorphism - k-WL test

The k-WL test improves on this difficulty by coloring node
sets of size k [Maron et al., 2019]

The sub-graph structure of nodes in the k-tuples determine
the initial k-tuple colors

Colors are updated based on the colors of the neighborhood
of k-tuples, which is all tuples where one node has been
replaced by another node

1-WL and 2-WL test are equivalent in discriminative power

Otherwise k+ 1-WL is more powerful than k-WL

18 29

Expressive power of graph networks

Recall the update rule of graph neural networks

x′i = ϕ

xi,⊕
j→i

ψ(xi, xj)

The rule is identical to the hash function of the 1-WL test
GNNs are therefore only as powerful as the 1-WL test in
discriminating graphs [Xu et al., 2018]
Although we seem to need permutation equivariance for
graph neural networks, we then loose essential information
on the graph structure and cannot distinguish between all
graphs

19 29

Beyond 1-WL

There exist several strategies to increase the power of GNNs
beyond 1-WL:
▶ Design models equivalent to the k-WL test with k > 1

[Maron et al., 2018, Maron et al., 2019,
Keriven and Peyré, 2019, Azizian and Lelarge, 2020]

▶ Specific pre-coloring of nodes to encode positional
information3

Pre-coloring based on graph substructures
[Bouritsas et al., 2022]
Using simplicial- or cell-complexes
[Bodnar et al., 2021b, Bodnar et al., 2021a]
Graph Laplacian eigenvectors [Dwivedi et al., 2020]

▶ Work with sub-graphs and local equivariance, e.g. natural
graph networks [de Haan et al., 2020]

3Remember that the WL test uses the same initial color for all nodes
20 29

Subgraph isomorphic counting

1

2

2

3

4

5

6

7

1
32

1
52

1
53

1
22

1 2
2

1 4
3

1 6
5

automorphic

1
2

2

Feature vector
for node 1

4

3

1

Subgraph 1

Subgraph 2

Features encode local environment through subgraph
counting [Bouritsas et al., 2022]

21 29

Natural Graph Networks (NGNs)

Recall the update function of CGNNs

x′i = σ

∑
j→i

Wxj

NGNs [de Haan et al., 2020] generalize this update formula
as follows

x′i = σ

∑
j→i

WG
ijxj

i.e. the weight matrix depends on the graph G and the edge
(i, j).

Isomorphic graphs share the same weights

Automorphic graphs constrain the weight matrices
22 29

Natural Graph Networks (NGNs)

Automorphic graphs constrain weight matrices

Given the following graph G and assume for simplicity that
WG
ij = WG

ji

1

2 3

4

1

3 2

4

5 5

a b

c d

e

a b

c d

e
1

2

3

4

5

2 3 4 51
a

a

b

b

c

c

d

d

e

e

1

2

3

4

5

2 3 4 51
b

b

a

a

d

d

c

c

e

e

Edges a,b and c,d must have the same weights, i.e.
WG

12 = WG
13 and WG

24 = WG
34

23 29

Natural Graph Networks (NGNs)

Natural graphs in this form are too general, i.e. each set of
isomorphic graphs receives its own weights

With this minimal weight sharing no learning across graphs
is possible

Local natural graphs (LNGs) solve this issue by looking at
small sub-graphs

24 29

GNNs in Practice

CGCNN

Crystal Graph Convolutional Neural Network (CGCNN)
[Xie and Grossman, 2018], one of the first and simplest
crystal graph networks

Initial node features: Group number, periodic number,
electronegativity, covalent radius, valence electrons, first
ionization energy, electron affinity, block, atomic volume

Initial edge features: Atom distance
25 29

ALIGNN

[Choudhary and DeCost, 2021]

26 29

ALIGNN

ALIGNN [Choudhary and DeCost, 2021] performs edge-gated
graph convolution simultaneously on both the atomistic
bond graph and the line graph

Atomistic bond graph: Atoms are nodes, bonds are edges
▶ Initial node features: Electronegativity, group number,

covalent radius, valence electrons, first ionization energy,
electron affinity, block, and atomic volume

▶ Initial edge features: RBF expanded interatomic bond
distances

Line graph: Bonds are nodes, bond pairs with one common
atom (or atom triplets) are edges. Nodes correspond to
bonds in the atomistic bond graph
▶ Node features: Edge features of the bond graph
▶ Initial edge features: RBF expanded bond angles

27 29

Furhter reading

Review of graph neural networks [Zhou et al., 2020]

Geometric deep learning [Bronstein et al., 2021]

28 29

Software

GNNs are implemented in PyTorch Geometric:

Website:
https://pyg.org/

Documentation:
https://pytorch-geometric.readthedocs.io

29 / 29

https://pyg.org/
https://pytorch-geometric.readthedocs.io

References I

Azizian, W. and Lelarge, M. (2020).
Expressive power of invariant and equivariant graph neural
networks.
arXiv preprint arXiv:2006.15646.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A.,
Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A.,
Faulkner, R., et al. (2018).
Relational inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261.

Bodnar, C., Frasca, F., Otter, N., Wang, Y., Lio, P., Montufar, G. F.,
and Bronstein, M. (2021a).
Weisfeiler and lehman go cellular: Cw networks.
Advances in Neural Information Processing Systems, 34:2625–2640.

References II

Bodnar, C., Frasca, F., Wang, Y., Otter, N., Montufar, G. F., Lio, P.,
and Bronstein, M. (2021b).
Weisfeiler and lehman go topological: Message passing
simplicial networks.
In International Conference on Machine Learning, pages 1026–1037.
PMLR.
Bouritsas, G., Frasca, F., Zafeiriou, S. P., and Bronstein, M. (2022).
Improving graph neural network expressivity via subgraph
isomorphism counting.
IEEE Transactions on Pattern Analysis and Machine Intelligence.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P. (2021).
Geometric deep learning: Grids, groups, graphs, geodesics, and
gauges.
arXiv preprint arXiv:2104.13478.

References III

Choudhary, K. and DeCost, B. (2021).
Atomistic line graph neural network for improved materials
property predictions.
npj Computational Materials, 7(1):1–8.

de Haan, P., Cohen, T. S., and Welling, M. (2020).
Natural graph networks.
Advances in Neural Information Processing Systems, 33:3636–3646.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and Bresson, X.
(2020).
Benchmarking graph neural networks.
arXiv preprint arXiv:2003.00982.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E.
(2017).
Neural message passing for quantum chemistry.
In International conference on machine learning, pages 1263–1272.
PMLR.

References IV

Huang, N. T. and Villar, S. (2021).
A short tutorial on the weisfeiler-lehman test and its variants.
In ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 8533–8537. IEEE.

Joshi, C. K., Laurent, T., and Bresson, X. (2019).
An efficient graph convolutional network technique for the
travelling salesman problem.
arXiv preprint arXiv:1906.01227.

Keriven, N. and Peyré, G. (2019).
Universal invariant and equivariant graph neural networks.
Advances in Neural Information Processing Systems, 32.

Marcheggiani, D. and Titov, I. (2017).
Encoding sentences with graph convolutional networks for
semantic role labeling.
arXiv preprint arXiv:1703.04826.

References V

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman, Y. (2019).
Provably powerful graph networks.
Advances in neural information processing systems, 32.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y. (2018).
Invariant and equivariant graph networks.
arXiv preprint arXiv:1812.09902.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and
Bengio, Y. (2017).
Graph attention networks.
arXiv preprint arXiv:1710.10903.

Weisfeiler, B. and Leman, A. (1968).
The reduction of a graph to canonical form and the algebra
which appears therein.
NTI, Series, 2(9):12–16.

References VI

Xie, T. and Grossman, J. C. (2018).
Crystal graph convolutional neural networks for an accurate
and interpretable prediction of material properties.
Physical review letters, 120(14):145301.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018).
How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C.,
and Sun, M. (2020).
Graph neural networks: A review of methods and applications.
AI Open, 1:57–81.

	Graph Convolutional Neural Networks (GCNNs)
	GCNN Generalizated Update Rules
	Graph Neural Networks (GNNs)
	Disciminative Power of GNNs
	GNNs in Practice
	Appendix

