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m Graph Convolutional Neural Networks (GCNN)
m General graph neural networks (GNN)
m Graph isomorphisms and discriminative power of GNNs

m Advanced models and applications




GRAPH CONVOLUTIONAL NEURAL
NETWORKS (GCNNS)




GRAPH CONVOLUTIONS

m Convolutions are not only restricted to image and
time-series data

m Graph convolutions are used to model the interaction
between nodes

m Let G = (N, E) denote a graph with nodes N and edges E

m How could we implement a convolution of G with a weight
matrix W?

m The result of a convolution is again a graph?, i.e.

G=GxW

"Remember that convolution on images also returns an image




GRAPH CONVOLUTIONS

m Graph G with 5 nodes and 5 edges:

m We assign a feature vector x; € RP to the i-th node
m The feature vector can depend on the type of the node

m Nodes of the same type might share the same feature vector
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GRAPH CONVOLUTIONS

m Let A = (aj); € R®* denote the adjacency matrix of a graph

with k nodes

m The strength of the connection between node i and j is given
by aj;

m Self-connections a;; # 0 allow to incorporate the features of
the nodes itself

m The convolution operation updates the feature vector of
node i by summing over all neighbor nodes, i.e.

XI{ =0 Z GijWXj =0 Z WXJ
j j—i
where W € RP*P and ¢ is the activation function?

2Graph convolutions are permutation equivariant




GRAPH CONVOLUTIONS

m For the full graph we obtain

X =c(A X W)
~—~ N~~~
kxp RxkR kRxp Pxp

where X € R**P is the matrix of k feature vectors

m Note that the weight matrix W does not depend on the size
and connectivity of the graph

m W can be applied to multiple graphs and optimized during
training of the graph convolutional neural network (GCNN)

m GCNNSs typically apply multiple convolutions and afterwards
compute summary statistics of the feature vectors, the result
can then be used in a conventional neural network

2Many extensions and generalizations exist
[Battaglia et al., 2018, Dwivedi et al., 2020]

6]



GCNN
GENERALIZATED UPDATE RULES




GRAPH CONVOLUTIONS - SELF-CONNECTIONS

m Graph convolutional networks as introduced so far, can be
efficiently computed, but are limited in their expressive
power

m The same weight matrix W is used for all nodes

m Asimple extension is to introduce a separate weight matrix
V for self-connections

X =0 (in +)° ij>
j—i

m Note that now the sum over {j — i} should not include any
self-connections




GRAPH CONVOLUTIONS - EDGE GATES

m Another important generalization are edge gates
[Marcheggiani and Titov, 2017]

m Edge gates allow the network to learn what edges are
important for the graph learning task

m The update function is given by
Xi=o | X m© Wy
J—i

where © denotes the element-wise multiplication
(Hadamard product)

m The n; € RP act as edge gates and are computed as

77,'j =0 (AX,' aF BXI)

- 8|



GRAPH CONVOLUTIONS - EDGE FEATURES

m Even more general are networks that contain separate
features on edges [Joshi et al., 2019]

m Node features and edge features e;; between nodes i and j
are updated as follows

X; =¥} (Z njj ©) WXj)

j—i
e;j =0 (AX,' = BX} i Ce,-j)
= o)
P Yko(eir) e

m Note that 7; is a normalized version of o(ej;)




GRAPH NEURAL NETWORKS
(GNNs)




PERMUTATION EQUIVARIANCE ON GRAPHS

m Let X € RF*P be the feature matrix of a graph G with k nodes

m Let os(X) denote the result of applying a graph neural
network ¢g to X

m 7(G, X) denotes a row-permutation of X with corresponding
relabeling of nodes in G

m We require that o is equivariant with respect to 7
(permutation equivariant), i.e.

(G,X) —2 5 (G,Y)




GRAPH NEURAL NETWORKS (GNNS)

e W
I

m Three types of GNNs:

Convolution, Attention, Message passing

Update rule of GNNs [Bronstein et al., 2021]

X - (n@w i j)
J—i

where @ is a permutation invariant aggregation function, ¢ and
1 are learnable functions




GRAPH NEURAL NETWORKS - GCNNSs

m General update formula of GNNs [Bronstein et al., 2021]:

Xi=¢ (,7@1/1 l’!)
J—i

where @ is a permutation invariant aggregation function

m GCNNSs are an instance of GNNs, because

Xi=¢ (,,@z/) ; ]) a(Vx,-+Zij)
J—i J—i

where ¢(x;,2) = o(Vx; +2), @ = >, and ¥(x;, X;) = Wx;




GRAPH NEURAL NETWORKS - SELF-ATTENTION

m General update formula of GNNs [Bronstein et al., 2021]:

X': (n@w i j)
j—i

where € is a permutation invariant aggregation function
m Self-attention layers are characterized by

w(XHXj) — a(XHXj)w (Xj)

where a denotes the attention mechanism that computes
the similarity between x; and x; [Velickovic et al., 2017]

m The message ¢'(x;) from node j is weighted by the attention
value a(x;", x;)



GRAPH NEURAL NETWORKS - MESSAGE PASSING

m General update formula of GNNs [Bronstein et al., 2021]:

Xi = ¢ (Xi, @¢(Xiaxj))

J—i
where @ is a permutation invariant aggregation function

m The most general version of GNNs are message passing
networks, where 1) is a neural network itself. The message
received by node i is computed from both the feature
vectors of node i and j [Gilmer et al., 2017]




DISCIMINATIVE POWER OF GNNS




GRAPH ISOMORPHISM

Graph isomorphism

Let G and H be two graphs with vertex sets V(G) and V(H). A
graph isomorphism f between G and H is defined as a function
f : V(G) — V(H) such that for all vertices u, v adjacent in G it
follows that f(u) and f(v) are adjacent in H.

m Two graphs are called isomorphic if there exists a graph
isomorphism

m Finding graph isomorphisms is difficult, i.e. for a graph with n
nodes we have to test n! node permutations

m Weisfeiler-Lehman Isomorphism Test can be used as a
computationally fast heuristic



GRAPH ISOMORPHISM

Weisfeiler-Lehman Isomorphism Test (1-WL)

For both graphs G and H, assign each node i an initial node color
X; = 1. Within each iteration, the node color is updated using a
given hash function according to the update rule

Xj + hash (x;, {{ x;j[j =i }}) ,

where {{ - }} denotes a multiset. The hash function maps the
current node color and the multiset of neighboring node colors
to a new node color from a discrete set.

Nodes are partitioned according to their colors. The algorithm
terminates if node partitions are stable. G and H pass the test if
nx(G) = nx(H) for all x, where ny(G) = >";.; Ix—x, is the number of
occurrences of color x [Huang and Villar, 2021].




GRAPH ISOMORPHISM

m Note that the feature vectors x; might never become stable,
however, the node partitions will

m The Weisfeiler-Lehman Isomorphism Test has limited power

» { Test fails } — graphs are not isomorphic

» Some graphs that pass the test are not isomorphic

m Example of non-isomorphic graphs that pass the test:




GRAPH ISOMORPHISM - R-WL TEST

m The R-WL test improves on this difficulty by coloring node
sets of size k [Maron et al., 2019]

m The sub-graph structure of nodes in the k-tuples determine
the initial k-tuple colors

m Colors are updated based on the colors of the neighborhood
of k-tuples, which is all tuples where one node has been
replaced by another node

m 1-WL and 2-WL test are equivalent in discriminative power

m Otherwise k + 1-WL is more powerful than k-WL




EXPRESSIVE POWER OF GRAPH NETWORKS

m Recall the update rule of graph neural networks

X': (lv@¢ i })
J—i

m The rule is identical to the hash function of the 1-WL test

m GNNs are therefore only as powerful as the 1-WL test in
discriminating graphs [Xu et al., 2018]

m Although we seem to need permutation equivariance for
graph neural networks, we then loose essential information
on the graph structure and cannot distinguish between all
graphs



m There exist several strategies to increase the power of GNNs
beyond 1-WL:

» Design models equivalent to the R-WL test with k > 1
[Maron et al., 2018, Maron et al., 2019,
Keriven and Peyré, 2019, Azizian and Lelarge, 2020]

» Specific pre-coloring of nodes to encode positional
information?3

B Pre-coloring based on graph substructures
[Bouritsas et al., 2022]

W Using simplicial- or cell-complexes
[Bodnar et al., 2021b, Bodnar et al., 2021a]

B Graph Laplacian eigenvectors [Dwivedi et al., 2020]

» Work with sub-graphs and local equivariance, e.g. natural
graph networks [de Haan et al., 2020]

3Remember that the WL test uses the same initial color for all nodes




SUBGRAPH ISOMORPHIC COUNTING

Subgraph 2

./.\.
O Feature vector
./’\. ./.\. for node 1
Subgraph 1 ./.\. 4
E— ® /.\. —_— 3
./.\. 1
./.\.

m Features encode local environment through subgraph
counting [Bouritsas et al., 2022]




NATURAL GRAPH NETWORKS (NGNS)

m Recall the update function of CGNNs

Xi=o0 Z Wx;
J—si

m NGNs [de Haan et al., 2020] generalize this update formula

as follows
G
J—i

i.e. the weight matrix depends on the graph G and the edge
(i,))-
m Isomorphic graphs share the same weights

m Automorphic graphs constrain the weight matrices




NATURAL GRAPH NETWORKS (NGNS)

m Automorphic graphs constrain weight matrices

m Given the following graph G and assume for simplicity that
wé = WG
ij

Ul WIN|E
[=3

m Edges a, b and ¢, d must have the same weights, i.e.
WS, = WG and W264 = W,




NATURAL GRAPH NETWORKS (NGNS)

m Natural graphs in this form are too general, i.e. each set of
isomorphic graphs receives its own weights

m With this minimal weight sharing no learning across graphs
is possible

m Local natural graphs (LNGs) solve this issue by looking at
small sub-graphs




GNNS IN PRACTICE



m Crystal Graph Convolutional Neural Network (CGCNN)
[Xie and Grossman, 2018], one of the first and simplest
crystal graph networks

m Initial node features: Group number, periodic number,
electronegativity, covalent radius, valence electrons, first
ionization energy, electron affinity, block, atomic volume

m Initial edge features: Atom distance




ALIGNN

Node features: v; Nodes are bonds )
i Edges are bond pairs
Edge features f
e;j =RBF(||r;; — R[] Line graph \ i ik
oDEREn | (— ( N? «
o)

triplet features: t; P

Nodes are atoms tiji = RBF(”eijk =TI </\

Edges are bonds --!/ \\ j

[Choudhary and DeCost, 2021]




ALIGNN

m ALIGNN [Choudhary and DeCost, 2021] performs edge-gated
graph convolution simultaneously on both the atomistic
bond graph and the line graph

m Atomistic bond graph: Atoms are nodes, bonds are edges
» |nitial node features: Electronegativity, group number,
covalent radius, valence electrons, first ionization energy,
electron affinity, block, and atomic volume
» |nitial edge features: RBF expanded interatomic bond
distances

m Line graph: Bonds are nodes, bond pairs with one common
atom (or atom triplets) are edges. Nodes correspond to
bonds in the atomistic bond graph

» Node features: Edge features of the bond graph
» |nitial edge features: RBF expanded bond angles




FURHTER READING

m Review of graph neural networks [Zhou et al., 2020]

m Geometric deep learning [Bronstein et al., 2021]




SOFTWARE

GNNs are implemented in PyTorch Geometric:

m Website:
https://pyg.org/

m Documentation:
https://pytorch-geometric.readthedocs.io


https://pyg.org/
https://pytorch-geometric.readthedocs.io
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