Machine Learning in Bioinformatics

GRAPH NeURAL NETWORKS

Philipp Benner
philipp.benner@bam.de
VP. 1 - eScience
Federal Institute of Materials Research and Testing (BAM)

April 25, 2024

GRAPH DATA

OUTLINE

■ Graph Convolutional Neural Networks (GCNN)
■ General graph neural networks (GNN)

- Graph isomorphisms and discriminative power of GNNs

■ Advanced models and applications

GRAPH CONVOLUTIONAL NEURAL Networks (GCNNs)

GRAPH CONVOLUTIONS

■ Convolutions are not only restricted to image and time-series data

■ Graph convolutions are used to model the interaction between nodes

- Let $G=(N, E)$ denote a graph with nodes N and edges E

■ How could we implement a convolution of G with a weight matrix W?

■ The result of a convolution is again a graph ${ }^{1}$, i.e.

$$
G^{\prime}=G * W
$$

${ }^{1}$ Remember that convolution on images also returns an image

GRAPH CONVOLUTIONS

■ Graph G with 5 nodes and 5 edges:

■ We assign a feature vector $x_{i} \in \mathbb{R}^{p}$ to the i-th node
■ The feature vector can depend on the type of the node
■ Nodes of the same type might share the same feature vector

GRAPH CONVOLUTIONS

- Graph G with 5 nodes and 5 edges:

■ We assign a feature vector $x_{i} \in \mathbb{R}^{p}$ to the i-th node
■ The feature vector can depend on the type of the node
■ Nodes of the same type might share the same feature vector

GRAPH CONVOLUTIONS

■ Let $A=\left(a_{i j}\right)_{i j} \in \mathbb{R}^{k \times k}$ denote the adjacency matrix of a graph with k nodes

- The strength of the connection between node i and j is given by $a_{i j}$
■ Self-connections $a_{i i} \neq 0$ allow to incorporate the features of the nodes itself

■ The convolution operation updates the feature vector of node i by summing over all neighbor nodes, i.e.

$$
x_{i}^{\prime}=\sigma\left(\sum_{j} a_{i j} W x_{j}\right)=\sigma\left(\sum_{j \rightarrow i} W x_{j}\right)
$$

where $W \in \mathbb{R}^{p \times p}$ and σ is the activation function ${ }^{2}$
${ }^{2}$ Graph convolutions are permutation equivariant

GRAPH CONVOLUTIONS

- For the full graph we obtain

$$
\underbrace{X^{\prime}}_{k \times p}=\sigma(\underbrace{A}_{k \times k} \underbrace{X}_{k \times p} \underbrace{W^{\top}}_{p \times p})
$$

where $X \in \mathbb{R}^{k \times p}$ is the matrix of k feature vectors
■ Note that the weight matrix W does not depend on the size and connectivity of the graph

- W can be applied to multiple graphs and optimized during training of the graph convolutional neural network (GCNN)

■ GCNNs typically apply multiple convolutions and afterwards compute summary statistics of the feature vectors, the result can then be used in a conventional neural network

[^0]
GCNN

Generalizated Update Rules

GRAPH CONVOLUTIONS - SELF-CONNECTIONS

■ Graph convolutional networks as introduced so far, can be efficiently computed, but are limited in their expressive power

- The same weight matrix W is used for all nodes

■ A simple extension is to introduce a separate weight matrix V for self-connections

$$
x_{i}^{\prime}=\sigma\left(V x_{i}+\sum_{j \rightarrow i} W x_{j}\right)
$$

■ Note that now the sum over $\{j \rightarrow i\}$ should not include any self-connections

GRAPH CONVOLUTIONS - EdgE GATES

■ Another important generalization are edge gates [Marcheggiani and Titov, 2017]

■ Edge gates allow the network to learn what edges are important for the graph learning task

- The update function is given by

$$
x_{i}^{\prime}=\sigma\left(\sum_{j \rightarrow i} \eta_{i j} \odot W x_{j}\right)
$$

where \odot denotes the element-wise multiplication (Hadamard product)
■ The $\eta_{i j} \in \mathbb{R}^{p}$ act as edge gates and are computed as

$$
\eta_{i j}=\sigma\left(A x_{i}+B x_{j}\right)
$$

GRAPH CONVOLUTIONS - EdgE FEATURES

■ Even more general are networks that contain separate features on edges [Joshi et al., 2019]
$■$ Node features and edge features $e_{i j}$ between nodes i and j are updated as follows

$$
\begin{aligned}
x_{i}^{\prime} & =\sigma\left(\sum_{j \rightarrow i} \eta_{i j} \odot W x_{j}\right) \\
e_{i j}^{\prime} & =\sigma\left(A x_{i}+B x_{j}+C e_{i j}\right) \\
\eta_{i j} & =\frac{\sigma\left(e_{i j}\right)}{\sum_{k} \sigma\left(e_{i k}\right)+\epsilon}
\end{aligned}
$$

■ Note that $\eta_{i j}$ is a normalized version of $\sigma\left(e_{i j}\right)$

Graph NeURAL Networks (GNNs)

PERMUTATION EQUIVARIANCE ON GRAPHS

■ Let $X \in \mathbb{R}^{k \times p}$ be the feature matrix of a graph G with k nodes
■ Let $\varphi_{G}(X)$ denote the result of applying a graph neural network φ_{G} to X

- $\tau(G, X)$ denotes a row-permutation of X with corresponding relabeling of nodes in G

■ We require that φ_{G} is equivariant with respect to τ (permutation equivariant), i.e.

GRAPH NEURAL NETWORKS (GNNS)

- Three types of GNNs:

Convolution, Attention, Message passing

Update rule of GNNs [Bronstein et al., 2021]

$$
x_{i}^{\prime}=\phi\left(x_{i}, \bigoplus_{j \rightarrow i} \psi\left(x_{i}, x_{j}\right)\right)
$$

where \bigoplus is a permutation invariant aggregation function, ϕ and ψ are learnable functions

GRAPH NEURAL NETWORKS - GCNNS

- General update formula of GNNs [Bronstein et al., 2021]:

$$
x_{i}^{\prime}=\phi\left(x_{i}, \bigoplus_{j \rightarrow i} \psi\left(x_{i}, x_{j}\right)\right)
$$

where \oplus is a permutation invariant aggregation function

- GCNNs are an instance of GNNs, because

$$
x_{i}^{\prime}=\phi\left(x_{i}, \bigoplus_{j \rightarrow i} \psi\left(x_{i}, x_{j}\right)\right)=\sigma\left(v x_{i}+\sum_{j \rightarrow i} w x_{j}\right)
$$

where $\phi\left(x_{i}, z\right)=\sigma\left(V x_{i}+z\right), \oplus=\sum$, and $\psi\left(x_{i}, x_{j}\right)=W x_{j}$

GRAPH NEURAL NETWORKS - SELF-ATTENTION

■ General update formula of GNNs [Bronstein et al., 2021]:

$$
x_{i}^{\prime}=\phi\left(x_{i}, \bigoplus_{j \rightarrow i} \psi\left(x_{i}, x_{j}\right)\right)
$$

where \bigoplus is a permutation invariant aggregation function
■ Self-attention layers are characterized by

$$
\psi\left(x_{i}, x_{j}\right)=a\left(x_{i}, x_{j}\right) \psi^{\prime}\left(x_{j}\right)
$$

where a denotes the attention mechanism that computes the similarity between x_{i} and x_{j} [Veličković et al., 2017]

■ The message $\psi^{\prime}\left(x_{j}\right)$ from node j is weighted by the attention value $a\left(x_{i}^{\top}, x_{j}\right)$

GRaph neural networks - Message passing

■ General update formula of GNNs [Bronstein et al., 2021]:

$$
x_{i}^{\prime}=\phi\left(x_{i}, \bigoplus_{j \rightarrow i} \psi\left(x_{i}, x_{j}\right)\right)
$$

where \bigoplus is a permutation invariant aggregation function
■ The most general version of GNNs are message passing networks, where ψ is a neural network itself. The message received by node i is computed from both the feature vectors of node i and j [Gilmer et al., 2017]

DISCIMINATIVE POWER OF GNNs

GRAPH ISOMORPHISM

Graph isomorphism

Let G and H be two graphs with vertex sets $V(G)$ and $V(H)$. A graph isomorphism f between G and H is defined as a function $f: V(G) \mapsto V(H)$ such that for all vertices u, v adjacent in G it follows that $f(u)$ and $f(v)$ are adjacent in H.

■ Two graphs are called isomorphic if there exists a graph isomorphism

■ Finding graph isomorphisms is difficult, i.e. for a graph with n nodes we have to test n ! node permutations

- Weisfeiler-Lehman Isomorphism Test can be used as a computationally fast heuristic

GRAPH ISOMORPHISM

Weisfeiler-Lehman Isomorphism Test (1-WL)
 [Weisfeiler and Leman, 1968]

For both graphs G and H, assign each node i an initial node color $x_{i}=1$. Within each iteration, the node color is updated using a given hash function according to the update rule

$$
x_{i} \leftarrow \operatorname{hash}\left(x_{i},\left\{\left\{x_{j} \mid j \rightarrow i\right\}\right\}\right),
$$

where $\{\{\cdot\}\}$ denotes a multiset. The hash function maps the current node color and the multiset of neighboring node colors to a new node color from a discrete set.
Nodes are partitioned according to their colors. The algorithm terminates if node partitions are stable. G and H pass the test if $n_{x}(G)=n_{x}(H)$ for all x, where $n_{x}(G)=\sum_{i \in G} \mathbb{1}_{x=x_{i}}$ is the number of occurrences of color x [Huang and Villar, 2021].

GRAPH ISOMORPHISM

■ Note that the feature vectors x_{i} might never become stable, however, the node partitions will

■ The Weisfeiler-Lehman Isomorphism Test has limited power

- \{ Test fails $\} \rightarrow$ graphs are not isomorphic
- Some graphs that pass the test are not isomorphic

■ Example of non-isomorphic graphs that pass the test:

GRAPH ISOMORPHISM - k-WL TEST

■ The k-WL test improves on this difficulty by coloring node sets of size k [Maron et al., 2019]

■ The sub-graph structure of nodes in the k-tuples determine the initial k-tuple colors

■ Colors are updated based on the colors of the neighborhood of k-tuples, which is all tuples where one node has been replaced by another node

■ 1-WL and 2-WL test are equivalent in discriminative power
■ Otherwise $k+1-\mathrm{WL}$ is more powerful than k-WL

EXPRESSIVE POWER OF GRAPH NETWORKS

- Recall the update rule of graph neural networks

$$
x_{i}^{\prime}=\phi\left(x_{i}, \bigoplus_{j \rightarrow i} \psi\left(x_{i}, x_{j}\right)\right)
$$

■ The rule is identical to the hash function of the $1-W L$ test
■ GNNs are therefore only as powerful as the 1-WL test in discriminating graphs [Xu et al., 2018]
■ Although we seem to need permutation equivariance for graph neural networks, we then loose essential information on the graph structure and cannot distinguish between all graphs

BEYOND 1-WL

■ There exist several strategies to increase the power of GNNs beyond 1-WL:

- Design models equivalent to the k-WL test with $k>1$
[Maron et al., 2018, Maron et al., 2019,
Keriven and Peyré, 2019, Azizian and Lelarge, 2020]
- Specific pre-coloring of nodes to encode positional information ${ }^{3}$
- Pre-coloring based on graph substructures [Bouritsas et al., 2022]
- Using simplicial- or cell-complexes [Bodnar et al., 2021b, Bodnar et al., 2021a]
■ Graph Laplacian eigenvectors [Dwivedi et al., 2020]
- Work with sub-graphs and local equivariance, e.g. natural graph networks [de Haan et al., 2020]
${ }^{3}$ Remember that the WL test uses the same initial color for all nodes

SUBGRAPH ISOMORPHIC COUNTING

■ Features encode local environment through subgraph counting [Bouritsas et al., 2022]

Natural Graph Networks (NGNs)

- Recall the update function of CGNNs

$$
x_{i}^{\prime}=\sigma\left(\sum_{j \rightarrow i} W x_{j}\right)
$$

■ NGNs [de Haan et al., 2020] generalize this update formula as follows

$$
x_{i}^{\prime}=\sigma\left(\sum_{j \rightarrow i} w_{i j}^{G} x_{j}\right)
$$

i.e. the weight matrix depends on the graph G and the edge (i,j).

■ Isomorphic graphs share the same weights
■ Automorphic graphs constrain the weight matrices

Natural Graph Networks (NGNs)

■ Automorphic graphs constrain weight matrices
■ Given the following graph G and assume for simplicity that $W_{i j}^{G}=W_{j i}^{G}$

	1	2	3	4	5
1		a	b		
2	a			c	
3	b			d	
4		c	d		e
5				e	

	1	2	3	4	5
1		b	a		
2	b			d	
3	a			c	
4		d	c		e
5				e	

■ Edges a, b and c, d must have the same weights, i.e. $W_{12}^{G}=W_{13}^{G}$ and $W_{24}^{G}=W_{34}^{G}$

Natural Graph Networks (NGNs)

- Natural graphs in this form are too general, i.e. each set of isomorphic graphs receives its own weights
- With this minimal weight sharing no learning across graphs is possible
- Local natural graphs (LNGs) solve this issue by looking at small sub-graphs

GNNS IN Practice

CGCNN

- Crystal Graph Convolutional Neural Network (CGCNN) [Xie and Grossman, 2018], one of the first and simplest crystal graph networks

■ Initial node features: Group number, periodic number, electronegativity, covalent radius, valence electrons, first ionization energy, electron affinity, block, atomic volume

■ Initial edge features: Atom distance

ALIGNN

[Choudhary and DeCost, 2021]

ALIGNN

■ ALIGNN [Choudhary and DeCost, 2021] performs edge-gated graph convolution simultaneously on both the atomistic bond graph and the line graph

■ Atomistic bond graph: Atoms are nodes, bonds are edges

- Initial node features: Electronegativity, group number, covalent radius, valence electrons, first ionization energy, electron affinity, block, and atomic volume
- Initial edge features: RBF expanded interatomic bond distances

■ Line graph: Bonds are nodes, bond pairs with one common atom (or atom triplets) are edges. Nodes correspond to bonds in the atomistic bond graph

- Node features: Edge features of the bond graph
- Initial edge features: RBF expanded bond angles

Furhter reading

■ Review of graph neural networks [Zhou et al., 2020]
■ Geometric deep learning [Bronstein et al., 2021]

Software

GNNs are implemented in PyTorch Geometric:

■ Website: https://pyg.org/

■ Documentation:
https://pytorch-geometric.readthedocs.io

References I

围 Azizian, W. and LeLARGE, M. (2020). EXPRESSIVE POWER OF INVARIANT AND EQUIVARIANT GRAPH NEURAL NETWORKS.
arXiv preprint arXiv:2006.15646.

- Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et Al. (2018).
ReLATIONAL INDUCTIVE BIASES, DEEP LEARNING, AND GRAPH NETWORKS. arXiv preprint arXiv:1806.01261.
Bodnar, C., Frasca, F., Otter, N., Wang, Y., Lio, P., Montufar, G. F., and Bronstein, M. (2021A).
Weisfeiler and lehman go cellular: Cw networks.
Advances in Neural Information Processing Systems, 34:2625-2640.

References II

Bodnar, C., Frasca, F., Wang, Y., Otter, N., Montufar, G. F., Lio, P., and Bronstein, M. (2021B).
Weisfeiler and lehman go topological: Message passing SIMPLICIAL NETWORKS.
In International Conference on Machine Learning, pages 1026-1037. PMLR.

Bouritsas, G., Frasca, F., Zafeiriou, S. P., and Bronstein, M. (2022). IMPROVING GRAPH NEURAL NETWORK EXPRESSIVITY VIA SUBGRAPH ISOMORPHISM COUNTING.
IEEE Transactions on Pattern Analysis and Machine Intelligence.

- Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P. (2021). Geometric deep learning: Grids, groups, Graphs, geodesics, and GAUGES.
arXiv preprint arXiv:2104.13478.

References III

Thoudhary, K. and DeCost, B. (2021).
ATOMISTIC LINE GRAPH NEURAL NETWORK FOR IMPROVED MATERIALS PROPERTY PREDICTIONS.
npj Computational Materials, 7(1):1-8.
De daan, P., Cohen, T. S., and Welling, M. (2020).
NATURAL GRAPH NETWORKS.
Advances in Neural Information Processing Systems, 33:3636-3646.
Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and Bresson, X. (2020).

BENCHMARKING GRAPH NEURAL NETWORKS.
arXiv preprint arXiv:2003.00982.
(ililmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017).

NEURAL MESSAGE PASSING FOR QUANTUM CHEMISTRY.
In International conference on machine learning, pages 1263-1272.
PMLR.

References IV

Huang, N. T. AND Villar, S. (2021).
A SHORT TUTORIAL ON THE WEISFEILER-LEHMAN TEST AND ITS VARIANTS. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 8533-8537. IEEE.
目 Joshi, C. K., Laurent, T., and Bresson, X. (2019).
An efficient graph convolutional network technique for the TRAVELLING SALESMAN PROBLEM.
arXiv preprint arXiv:1906.01227.
求 Keriven, N. and Peyré, G. (2019).
Universal invariant and equivariant graph neural networks. Advances in Neural Information Processing Systems, 32.

- Marcheggiani, D. and Titov, I. (2017).

Encoding sentences with graph convolutional networks for SEMANTIC ROLE LABELING.
arXiv preprint arXiv:1703.04826.

References V

T- Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman, Y. (2019). PROVABLY POWERFUL GRAPH NETWORKS.
Advances in neural information processing systems, 32.

- Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y. (2018). INVARIANT AND EQUIVARIANT GRAPH NETWORKS. arXiv preprint arXiv:1812.09902.
- Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., AND Bengio, Y. (2017).
GRAPH ATTENTION NETWORKS.
arXiv preprint arXiv:1710.10903.
T- WEISFEILER, B. AND LEMAN, A. (1968).
THE REDUCTION OF A GRAPH TO CANONICAL FORM AND THE ALGEBRA WHICH APPEARS THEREIN.
NTI, Series, 2(9):12-16.

References VI

- Xie, T. and Grossman, J. C. (2018).

CRYSTAL GRAPH CONVOLUTIONAL NEURAL NETWORKS FOR AN ACCURATE AND INTERPRETABLE PREDICTION OF MATERIAL PROPERTIES.
Physical review letters, 120(14):145301.
固 Xu, K., Hu, W., Leskovec, J., ANd Jegelka, S. (2018). How POWERFUL ARE GRAPH NEURAL NETWORKS? arXiv preprint arXiv:1810.00826.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., LI, C., and Sun, M. (2020).
Graph neural networks: A review of methods and applications. AI Open, 1:57-81.

[^0]: ${ }^{2}$ Many extensions and generalizations exist
 [Battaglia et al., 2018, Dwivedi et al., 2020]

