
Machine Learning in Bioinformatics
Invertible Neural Networks

Philipp Benner
philipp.benner@bam.de

VP.1 - eScience
Federal Institute of Materials Research and Testing (BAM)

April 25, 2024



Outline

Inverse problems

Invertible Neural Networks (INNs) [Ardizzone et al., 2018]

Normalizing Flows

Invertible ResNets

1 40



Inverse problems



Plato’s Cave

0Source: https://en.wikipedia.org/wiki/Allegory_of_the_cave
2 40

https://en.wikipedia.org/wiki/Allegory_of_the_cave


Inverse Problems

REALITY
(causes)

SHADOWS
(effects)

Measurements Inverse
problem

3 40



Injective, Surjective, Bijective

X Y

Injective

X Y

Surjective

X Y

Bijective

4 40



Inverse problems - Linear algebra

Given a linear equation

y = Ax

where A ∈ Rn×p, x ∈ Rp and y ∈ Rn

We can compute y if we have x given (and A of course)

A is injective iff rank(A) = p ≤ n

A is surjective iff rank(A) = n ≤ p

A is bijective iff rank(A) = n = p (⇒ A is invertible)

x = A−1y

5 40



Inverse problems - Linear algebra

A linear map defined by

y = Ax

is invertible if A is a square matrix with full rank

An affine map defined by

y = Ax + b

is invertible under the same condition

Nonlinear functions are invertible iff they are strictly
monotonic, but the inverse might be difficult to compute

6 40



Inverse problems - Probability

Assume X and Y are random variables such that X → Y

The likelihood of an event {Y = y} given {X = x} is

pr(y | x)

Bayes theorem tells us that

pr(x | y) = pr(y | x)pr(x)
pr(y)

The posterior distribution pr(x | y) is also called inverse
probability

It allows us to compute the probability of a cause (x) from a
given or observed effect (y)1

1If X → Y is a causal relationship
7 40



The ML Approach

Data driven approach:
Move most of our prior knowledge into data
Large n required!

x

x

1

n
...

y

y

1

n

...
Reality Measurements

Forward
ML Model

Backward
ML Model

Inverse problem is surjective

8 40



The ML Approach

Data driven approach:
Move most of our prior knowledge into data
Large n required!

x

x

1

n
...

y

y

1

n

...
Reality Measurements

Forward
ML Model

Backward
ML Model

Inverse problem is surjective
8 40



The ML Approach

Data driven approach:
Move most of our prior knowledge into data
Large n required!

x

x

1

n
...

y

y

1

n

...
Reality Measurements

Invertible
ML Model

Inverse problem is surjective
8 40



Invertible neural networks
(INNs)



Invertible neural networks (INNs)

Invertible neural network (INN)
A network f is bijective or invertible if it that has an inverse
network g = f−1 such that x = (g ◦ f )(x) for all input values x

There are multiple invertible architectures

Invertible neural networks are constructed by concatenating
invertible subnetworks called coupling blocks

For a network to be invertible, all coupling blocks must be
invertible

There exist multiple architectures, e.g. GLOW, RNVP, NICE

9 40



Invertible neural networks (INNs) - NICE

Input x and output y are split into two halves, i.e.

x = [x1, x2] , y = [y1, y2]

The NICE coupling block is defined by [Dinh et al., 2014]

y1 = x1

y2 = x2 + t(x1)

where t is an arbitrary function such as a neural network

The inverse is given by

x1 = y1

x2 = y2 − t(x1)

10 40



Invertible neural networks (INNs) - NICE

x

x1

x2

y

y1

y2

t

+

11 40



Invertible neural networks (INNs) - RNVP

The RealNVP (RNVP) coupling block is defined by
[Dinh et al., 2016]

y1 = x1 ⊙ exp [s2(x2)] + t2(x2)

y2 = x2 ⊙ exp [s1(y1)] + t1(y1)

where ⊙ is the element-wise multiplication, input and
output are split into two halves

x = [x1, x2] , y = [y1, y2]

and t1, t2, s1, s2 are arbitrary functions (e.g. dense neural
networks)

Notice that this architecture is an affine function, which can
be easily inverted

12 40



Invertible neural networks (INNs) - RNVP

x

x1

x2

y

y1

y2

s2

exp

t2

s1 t1

exp

+

+

13 40



Invertible neural networks (INNs) - RNVP

Inverting the neural network leads to

y1 = x1 ⊙ exp [s2(x2)] + t2(x2)

⇒ y1 − t2(x2) = x1 ⊙ exp [s2(x2)]

⇒ (y1 − t2(x2))⊙ exp [−s2(x2)] = x1

where x2 is obtained from

y2 = x2 ⊙ exp [s1(y1)] + t1(y1)

⇒ y2 − t1(y1) = x2 ⊙ exp [s1(y1)]

⇒ (y2 − t1(y1))⊙ exp [−s1(y1)] = x2

INNs typically stack many of these invertible blocks. The
input components (x(1), . . . , x(p)) of x are permuted after
each block

14 40



Invertible neural networks
for surjective problems



Invertible neural networks (INNs)

Most problems in machine learning are surjective
X Y

Example: In object recognition there are typically many
images that belong to the same classification

15 40



Invertible neural networks (INNs)

x(q)

x(1)

x(2)

. . .

. . .

. . .

. . . y

16 40



Invertible neural networks (INNs) - Ad-hoc

Let f be a trained neural network for predicting Y from some
input variable X

Given a fixed output value y, compute the inverse by
optimizing the input, i.e.

x̂ = argmin
x
L(f (x), y)

The loss function L should be the same as for learning the
network weights

Use gradient descent to invert the neural network

17 40



Invertible neural networks (INNs) - Ad-hoc

For surjective problems the solution is not unique and
depends on the initial condition

By testing multiple initial conditions, we may collect many
possible inverse solutions

What initial conditions should we select?

How can we be sure that we obtained all important
solutions?

Is there a better approach?

18 40



Invertible neural networks (INNs)

We extend the invertible network so that it generates
(samples) all input values {xi}i that correspond to a given
output value y

Idea: Augment y with additional values z
X Y Z

Elements X that map to the same points in Y have to be
mapped to different elements in Z

19 40



Invertible neural networks (INNs)

Augmented targets
The invertible neural network f computes

[y, z] = [fy(x), fz(x)] = f (x)

for an input x, where y = fy(x) and z = fz(x)

If both y and z are given, we can easily compute the inverse

x = g(y, z) = f−1(y, z)

The (intrinsic) dimension of [y, z] must be greater or equal to
the dimension of x

20 40



Invertible neural networks (INNs)

Given only the target value y, what z value should we select?

z values that have never been observed during training will
most likely result in unreasonable x values

We must constrain/regularize z. We want z to follow a
particular distribution, e.g.

z ∼ N (0, I)

where I is the identity matrix

To obtain a possible inverse of y, we first draw z and compute

x = g([y, z]) = f−1([y, z])

21 40



Invertible neural networks (INNs) - Learning

We have two training objectives:

▶ Given a set of training points (xi, yi)i, fy(xi) should match yi
with respect to some metric defined by the loss function

▶ For any pair of inputs (xi, xj) such that fy(xi) = fy(xj) we want
that fz(xi) ̸= fz(xj). In probabilistic terms we want that y and z
are independent.

Since we do not want to define a probability distribution for
x and y, we will work with empirical distributions

p̂(x) , p̂(y)

derived from our training data (xi, yi)i

For simplicity, we also assume that pr(z) is given as empirical
distribution p̂(z)

22 40



Invertible neural networks (INNs) - Learning

Formal definition of learning objectives

▶ Minimize Ly =
∑n

i ∥yi − fy(xi)∥2
2 (or any other norm)

▶ Minimize Ly,z which measures the discrepancy between

p̂(y)p̂(z) and q̂(y, z) ,

where q̂(y, z) is the empirical distribution estimated on

{[ŷi, ẑi] = f (xi) | i = 1, . . . ,n}

i.e. the set of points (ŷi, ẑi)i resulting from applying the neural
network f to training points (xi)i

We use the maximum mean discrepancy (MMD) to measure
the discrepancy between two empirical distributions

23 40



Invertible neural networks (INNs) - MMD

Assume we have two random variables X and Y

How can we measure the difference between their
distributions?

Example: Look at the difference between expectations, i.e.

∥EX X − EY Y∥2
2

What if two different distributions have the same mean?

We need to incorporate higher moments, i.e.∥∥∥∥EX

[
X
X2

]
− EY

[
Y
Y2

]∥∥∥∥2

2

24 40



Invertible neural networks (INNs) - MMD

How many moments do we need?

Using a feature mapping ϕ we can incorporate as many as we
want

Maximum mean discrepancy (MMD)
Given two random variables, X and Y, the MMD is defined as

MMD2(X, Y) = ∥EX ϕ(X)− EY ϕ(Y)∥2
H

where ϕ is a mapping into feature space H equipped with an
inner product ⟨·, ·⟩H and the corresponding norm ∥x∥2

H = ⟨x, x⟩H

25 40



Invertible neural networks (INNs) - MMD

The kernel trick is used to efficiently compute the MMD

Let κ(x, y) = ⟨ϕ(x), ϕ(y)⟩H denote the corresponding kernel
function

The MMD is expanded as follows

MMD2(X, Y) = ∥EX ϕ(X)− EY ϕ(Y)∥2
H

= ⟨EX ϕ(X),EX′ ϕ(X′)⟩H + ⟨EY ϕ(Y),EY′ ϕ(Y′)⟩H
− 2⟨EX ϕ(X),EY ϕ(Y)⟩H

= EX,X′ κ(X, X′) + EY,Y′ κ(Y, Y′)− 2EX,Y κ(X, Y)

26 40



Invertible neural networks (INNs) - MMD

Empirical estimate of the MMD

Assume we have n i.i.d. samples xi from X and m i.i.d.
samples yi from Y

EX,X′ κ(X, X′) =
1

n(n− 1)
∑

i

∑
j̸=i

κ(xi, xj)

where we have to exclude the case where xi = xj because for
continuous distributions this will happen with probability
zero

EX,Y κ(X, Y) =
1

nm
∑

i

∑
j

κ(xi, yj)

27 40



Normalizing Flows



Normalizing flows

Invertible neural networks are a special class of normalizing
flows

A Normalizing Flow is a transformation of a (simple)
probability distribution into another (more complex)
distribution [Kobyzev et al., 2020]

The transformation is computed using a sequence of
invertible and differentiable mappings

Let Z be a random variable with a simple and tractable
probability distribution, e.g. normal distribution

Let Y be a random variable such that Y = g(Z) where g is an
invertible function, i.e. g = f−1

28 40



Normalizing flows

Generative direction: To generate samples from Y we can
sample from the simple distribution Z and use g to obtain Y

Normalizing direction: If we have an observation {Y = y} we
can use f to compute the probability of y

29 40



Normalizing flows

Using the change of variables formula, we obtain

prY(y) = prZ(f (y)) |detDf (y)|
= prZ(f (y)) |detDg(f (y))|−1

where Df (y) denotes the Jacobian of f evaluated at y

If f = f1 ◦ f2 ◦ · · · ◦ fk is a sequence of invertible mappings fi
then

detDf (y) =
k∏

i=1

detDfi(y(i))

where y(i+1) = fi(y(i)) and y(1) = y

30 40



Normalizing flows - Training

Given a set of n observations (y1, . . . , yn)

Maximum likelihood approach: Maximize the probability

prY(y1, . . . , yn) =
n∑

i=1

log prY(yi)

=
n∑

i=1

pZ(f (yi)) + log |detDf (yi)|

with respect to parameters of f (i.e. weights of neural
network)

Use maximum entropy approach [Loaiza-Ganem et al., 2017]

31 40



Inverses of
residual neural networks



Inverse of ResNets

Residual neural networks (ResNets) are a special case where
the inverse can be computed without gradient descent
(under some constraints) [Behrmann et al., 2019]

Recall that a layer of a ResNet is defined as

xt+1 = xt + g(xt)

where g is a non-linear neural network layer

The inverse is given by

xt = xt+1 − g(xt)

= f (xt)

where f (xt) = xt+1 − g(xt) and xt+1 is treated as a parameter

32 40



Fixed points - Stability

Fixed point
For a function f a point x∗ that satisfies x∗ = f (x∗) is called a
fixed point

xt is a fixed point of f , which is also the inverse of the ResNet
with layer g

A fixed point x∗ is (locally) stable if∣∣∣∣ d
dx f (x)

∣∣∣∣
x=x∗

< 1

A fixed point x∗ is (locally) unstable if∣∣∣∣ d
dx f (x)

∣∣∣∣
x=x∗

> 1

33 40



Fixed points - Cobweb plots

Cobweb plot of the logistic map f (x) = rx(1− x):

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f
(x

)
=
rx

(1
−
x

)

x0 = 0.2, r = 2.8

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f
(x

)
=
rx

(1
−
x

)

x0 = 0.8, r = 0.9

xt+1 = f (xt) [blue line], x = y [red line]

34 40



Fixed points - Stability

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f
(x

)
=
rx

(1
−
x

)

x0 = 0.2, r = 2.8

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

f
(x

)
=
rx

(1
−
x

)

x0 = 0.8, r = 4.0

Fixed point x∗ = f (x∗) stable (left) and unstable (right)

35 40



Fixed points

Some maps do not have fixed points

One example is the circle map (for specific parameters)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
f

(x
)

=
x

+
Ω
−

K 2π
si

n
(2
π
x

)

x0 = 0.5,Ω = 0.3, K = 0.8

36 40



Lipschitz constants

Lipschitz constant
Let X, Y be two metric spaces with distance measures dX and dY .
A function f : X → Y is called Lipschitz continuous if there exists
a constant c such that

dY(f (x1), f (x2)) ≤ cdX(x1, x2)

The smallest constant c is called the Lipschitz constant

A special case is when f : R→ R is differentiable

In this case we have

c = sup
x∗

∣∣∣∣ d
dx f (x)

∣∣∣∣
x=x∗

37 40



Lipschitz constants

When f : Rn → Rn is differentiable then

c = sup
x∗
∥Df (x∗)∥0

where Df (x∗) is the Jacobi matrix evaluated at x∗ and ∥·∥0 the
operator norm

Let λ1(x∗), . . . , λn(x∗) denote the n eigenvalues of the Jacobi
matrix Df (x∗), then

∥Df (x∗)∥0 = max
k
|λk((x∗)|

38 40



Banach fixed-point theorem

Banach fixed-point theorem
Let (X,d) be a metric space and f : X → X a mapping such that

d(f (x1), f (x2)) ≤ cd(x1, x2)

with c ∈ [0, 1), then f is called a contraction and it has a unique
and stable fixed point x∗ = limt→∞ xt+1 = f (xt)

The Lipschitz constant c is an upper bound on the absolute
value of the slope of f

For c ∈ [0, 1) the function f must cross the main diagonal

Therefore, it must have a single fixed-point x∗

39 40



Computing ResNet inverses

Assume that our ResNet layer f is sufficiently well behaving:
▶ No discontinuities

▶ Absolute value of the slope bounded everywhere by 1,
i.e. c ∈ [0, 1)

▶ This can be achieved by constraining the eigenvalues of the
Jacobian during training

In this case we should be able to iterate

xt ← f (xt) = xt+1 − g(xt)

until arriving at a (stable) fixed point x∗

The fixed point x∗ is our inverse

40 / 40



References I

Ardizzone, L., Kruse, J., Wirkert, S., Rahner, D., Pellegrini, E. W.,
Klessen, R. S., Maier-Hein, L., Rother, C., and Köthe, U. (2018).
Analyzing inverse problems with invertible neural networks.
arXiv preprint arXiv:1808.04730.

Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D., and
Jacobsen, J.-H. (2019).
Invertible residual networks.
In International Conference on Machine Learning, pages 573–582.
PMLR.
Dinh, L., Krueger, D., and Bengio, Y. (2014).
Nice: Non-linear independent components estimation.
arXiv preprint arXiv:1410.8516.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2016).
Density estimation using real nvp.
arXiv preprint arXiv:1605.08803.



References II

Kobyzev, I., Prince, S. J., and Brubaker, M. A. (2020).
Normalizing flows: An introduction and review of current
methods.
IEEE transactions on pattern analysis and machine intelligence,
43(11):3964–3979.
Loaiza-Ganem, G., Gao, Y., and Cunningham, J. P. (2017).
Maximum entropy flow networks.
arXiv preprint arXiv:1701.03504.


	Inverse problems
	Invertible neural networks (INNs)
	Invertible neural networks for surjective problems
	Normalizing Flows
	Inverses of residual neural networks
	Appendix

