MACHINE LEARNING IN BIOINFORMATICS

INVERTIBLE NEURAL NETWORKS

Philipp Benner
philipp.benner@bam.de

VP.1 - eScience
Federal Institute of Materials Research and Testing (BAM)

April 25, 2024

OUTLINE

m Inverse problems
m Invertible Neural Networks (INNs) [Ardizzone et al., 2018]
m Normalizing Flows

m Invertible ResNets

INVERSE PROBLEMS

PLATO'S CAVE

°Source: https://en.wikipedia.org/wiki/Allegory_of_the_cave

https://en.wikipedia.org/wiki/Allegory_of_the_cave

INVERSE PROBLEMS

REALITY
(causes)
Measurements l Inverse
problem
SHADOWS
(effects)

INJECTIVE, SURJECTIVE, BIJECTIVE

0006000

Injective Surjective Bijective

INVERSE PROBLEMS - LINEAR ALGEBRA

m Given a linear equation
y = Ax
where Ac R"™P, x e RPandy € R"
m We can compute y if we have x given (and A of course)
m Aisinjective iff rank(A) =p <n
m Ais surjective iff rank(A) =n <p
m Ais bijective iff rank(A) =n=p (= Aisinvertible)

x=A"y

INVERSE PROBLEMS - LINEAR ALGEBRA

m A linear map defined by
y = AX
is invertible if A is a square matrix with full rank
m An affine map defined by
y=Ax+Db
is invertible under the same condition

m Nonlinear functions are invertible iff they are strictly
monotonic, but the inverse might be difficult to compute

6]

INVERSE PROBLEMS - PROBABILITY

m Assume X and Y are random variables such that X — Y

m The likelihood of an event {Y =y} given {X = x} is
pr(y | x)

m Bayes theorem tells us that

pr(y | x)pr(x)

pr(x|y) = o1l

m The posterior distribution pr(x |y) is also called inverse
probability

m It allows us to compute the probability of a cause (x) from a
given or observed effect (y)"

'If X — Y is a causal relationship

THE ML APPROACH

m Data driven approach:
Move most of our prior knowledge into data

m Large n required!

Reality Measurements
X1
Forward 3
ML Model
: Backward
ML Model
Xn

THE ML APPROACH

m Data driven approach:
Move most of our prior knowledge into data

m Large n required!

Reality Measurements
X1
Forward 3
ML Model
: Backward
ML Model
Xn

m Inverse problem is surjective

8]

THE ML APPROACH

m Data driven approach:
Move most of our prior knowledge into data

m Large n required!

Reality Measurements

Xq

Invertible
. € ML Model >

Xn

m Inverse problem is surjective

8]

INVERTIBLE NEURAL NETWORKS
(INNSs)

INVERTIBLE NEURAL NETWORKS (INNS)

Invertible neural network (INN)

A network f is bijective or invertible if it that has an inverse
network g = f~" such that x = (g o f)(x) for all input values x

m There are multiple invertible architectures

m Invertible neural networks are constructed by concatenating
invertible subnetworks called coupling blocks

m For a network to be invertible, all coupling blocks must be
invertible

m There exist multiple architectures, e.g. GLOW, RNVP, NICE

9

INVERTIBLE NEURAL NETWORKS (INNS) - NICE

m Input x and output y are split into two halves, i.e.
X:[X17X2]7 y:[y’hy?]
m The NICE coupling block is defined by [Dinh et al., 2014]

Yi=2Xq
Y2 = Xa + t(Xq)

where t is an arbitrary function such as a neural network
m The inverse is given by

X1 =V
Xa = Y5 — t(Xq)

INVERTIBLE NEURAL NETWORKS (INNS) - NICE

INVERTIBLE NEURAL NETWORKS (INNS) - RNVP

m The RealNVP (RNVP) coupling block is defined by
[Dinh et al., 2016]

Y1 =X © exp[S2(X2)] + t2(X2)
Y2 = Xa © exp [S1(Y1)] + ta(V1)

where @ is the element-wise multiplication, input and
output are split into two halves

X=[X1,%], y=I[VV]

and t,, t,,s,,s, are arbitrary functions (e.g. dense neural
networks)

m Notice that this architecture is an affine function, which can
be easily inverted

INVERTIBLE NEURAL NETWORKS (INNS) - RNVP

{ [|]
exp S.| | &,
{ Y
S,| | t,| |exp
Ly

Y1

Y-

INVERTIBLE NEURAL NETWORKS (INNS) - RNVP

m Inverting the neural network leads to

Y1 =X © exp [S2(X2)] + ta(X2)
= Vi — ta(X2) = X4 © exp [S2(X2)]
= (V1 —t2(X2)) © exp [=S2(X2)] = X4

where x, is obtained from
Y2 = X2 © exp [S1(y1)] + ta(y1)

= Ya = ti(y1) = X2 © exp [S1(y1)]
= (V2 — ti(y1)) © exp[=s1(y1)] = X2

m INNs typically stack many of these invertible blocks. The
input components (x(, ..., x(P)) of x are permuted after
each block

INVERTIBLE NEURAL NETWORKS
FOR SURJECTIVE PROBLEMS

INVERTIBLE NEURAL NETWORKS (INNS)

m Most problems in machine learning are surjective
X Y

m Example: In object recognition there are typically many
images that belong to the same classification

INVERTIBLE NEURAL NETWORKS (INNS)

X(l) ‘

O @O ®

L : 3 Oy
wel & ®

INVERTIBLE NEURAL NETWORKS (|NNS) - AD-HOC

m Let f be a trained neural network for predicting Y from some
input variable X

m Given a fixed output value y, compute the inverse by
optimizing the input, i.e.

X = arg min E(f(x)7y)

X

m The loss function £ should be the same as for learning the
network weights

m Use gradient descent to invert the neural network

INVERTIBLE NEURAL NETWORKS (|NNS) - AD-HOC

For surjective problems the solution is not unique and
depends on the initial condition

By testing multiple initial conditions, we may collect many
possible inverse solutions

m What initial conditions should we select?

m How can we be sure that we obtained all important
solutions?

m s there a better approach?

INVERTIBLE NEURAL NETWORKS (INNS)

m We extend the invertible network so that it generates
(samples) all input values {x;}; that correspond to a given
output value y

m ldea: Augment y with additional values z
X Y Z

m Elements X that map to the same points in Y have to be
mapped to different elements in Z

INVERTIBLE NEURAL NETWORKS (INNS)

Augmented targets

The invertible neural network f computes
v, 2] = [fy (%), f2(x)] = f(x)

for an input x, where y = f,(x) and z = f;(x)

m If both y and z are given, we can easily compute the inverse
x=9(y,2) =f""(v,2)

m The (intrinsic) dimension of [y, z] must be greater or equal to
the dimension of x

INVERTIBLE NEURAL NETWORKS (INNS)

m Given only the target value y, what z value should we select?

m z values that have never been observed during training will
most likely result in unreasonable x values

m We must constrain/regularize z. We want z to follow a
particular distribution, e.g.

z~ N(0o,l)
where | is the identity matrix

m To obtain a possible inverse of y, we first draw z and compute

x=g(ly.2]) =f(Iv.2])

INVERTIBLE NEURAL NETWORKS (|NNS) - LEARNING

m We have two training objectives:

» Given a set of training points (x;, y;);, fy(x;) should match y;
with respect to some metric defined by the loss function

» For any pair of inputs (x;, x;) such that f,(x;) = f,(x;) we want
that f;(x;) # f2(x;). In probabilistic terms we want that y and z
are independent.

m Since we do not want to define a probability distribution for
x and y, we will work with empirical distributions

p(x).p(y)
derived from our training data (x;, y;);

m For simplicity, we also assume that pr(z) is given as empirical
distribution p(z)

INVERTIBLE NEURAL NETWORKS (|NNS) - LEARNING

m Formal definition of learning objectives

> Minimize £, = 37 |lyi — fy(x;)|12 (or any other norm)

» Minimize £, , which measures the discrepancy between

~

p(y)p(z) and 4(y,2),
where q(y, z) is the empirical distribution estimated on
{Wi, 2] =f(x)|i=1,...,n}

i.e. the set of points (¥;, Z;); resulting from applying the neural
network f to training points (x;);

m We use the maximum mean discrepancy (MMD) to measure
the discrepancy between two empirical distributions

INVERTIBLE NEURAL NETWORKS (INNS) - MMD

m Assume we have two random variables X and Y

m How can we measure the difference between their
distributions?

m Example: Look at the difference between expectations, i.e.

IEx X — Ey YI[3
m What if two different distributions have the same mean?

m We need to incorporate higher moments, i.e.

o] -2]

2

2

INVERTIBLE NEURAL NETWORKS (INNS) - MMD

m How many moments do we need?

m Using a feature mapping ¢ we can incorporate as many as we
want

Maximum mean discrepancy (MMD)

Given two random variables, X and Y, the MMD is defined as

MMD2(X, Y) = |[Ex 6(X) — Ey 6(Y)|13,

where ¢ is a mapping into feature space H equipped with an
inner product (-, -)3 and the corresponding norm ||x||7, = (X, X)%

INVERTIBLE NEURAL NETWORKS (INNS) - MMD

m The Rernel trick is used to efficiently compute the MMD

m Let k(x,y) = (#(x), #(v))% denote the corresponding kernel
function

m The MMD is expanded as follows

MMD?(X,Y) = [[Ex ¢(X) — Ey ¢(Y)|13,
= (Ex o(X), Ex ¢(X'))2 + (Ey ¢(Y), Eyr ¢(Y'))

— 2(Ex ¢(X), Ey ¢(Y))n
= Exo 6(X,X) + Ey.ys 6(Y, Y') — 2Exy (X, Y)

INVERTIBLE NEURAL NETWORKS (INNS) - MMD

m Empirical estimate of the MMD

m Assume we have n i.i.d. samples x; from X and m i.i.d.
samples y; from Y

Exx £(X,X') =

K (X, X;)
i jA
where we have to exclude the case where x; = x; because for

continuous distributions this will happen with probability
zero

Exy (X, Y) anZ (%))

NORMALIZING FLOWS

NORMALIZING FLOWS

m Invertible neural networks are a special class of normalizing
flows

m A Normalizing Flow is a transformation of a (simple)
probability distribution into another (more complex)
distribution [Kobyzev et al., 2020]

m The transformation is computed using a sequence of
invertible and differentiable mappings

m Let Z be a random variable with a simple and tractable
probability distribution, e.g. normal distribution

m Let Y be arandom variable such that Y = g(Z) where g is an
invertible function, i.e. g =f~"

NORMALIZING FLOWS

Z=f1(Y)
-
Normalizing

direction —

pz(2)
py(y

Y =8(Z)
-
Generative
direction

Base distribution, Z Target distribution, Y

m Generative direction: To generate samples from Y we can
sample from the simple distribution Z and use g to obtain Y

m Normalizing direction: If we have an observation {Y =y} we
can use f to compute the probability of y

NORMALIZING FLOWS

m Using the change of variables formula, we obtain

pry(y) = prz(f(y)) [det Df (y)|
= prz(f(y)) [det Dg(f(y))| "

where Df(y) denotes the Jacobian of f evaluated at y

miIff=fiof,o---of,isasequence of invertible mappings f;
then

det Df(y) = [] det Dfi(y)

where y(it") = f;(y()) and y() =y

NORMALIZING FLOWS - TRAINING

m Given a set of n observations (y4,...,Yn)

m Maximum likelihood approach: Maximize the probability

pry(Ya, .-, ¥n) Z'ngfv Vi)

= Z pz(f(vi)) + log |det Df (y;)|

with respect to parameters of f (i.e. weights of neural
network)

m Use maximum entropy approach [Loaiza-Ganem et al., 2017]

INVERSES OF
RESIDUAL NEURAL NETWORKS

INVERSE OF RESNETS

m Residual neural networks (ResNets) are a special case where
the inverse can be computed without gradient descent
(under some constraints) [Behrmann et al., 2019]

m Recall that a layer of a ResNet is defined as
Xt+1 = Xt + g(Xt)
where g is a non-linear neural network layer
m The inverse is given by

Xt = Xt41 — 9(Xt)

= f(xt)

where f(x¢) = Xt41 — g(X¢) and x¢,, is treated as a parameter

FIXED POINTS - STABILITY

Fixed point

For a function f a point x* that satisfies x* = f(x*) is called a
fixed point

m X; is a fixed point of f, which is also the inverse of the ResNet
with layer g

m A fixed point x* is (locally) stable if

S5

<1

X=Xx*

m A fixed point x* is (locally) unstable if

d
&f (x) e

>1

FIXED POINTS - COBWEB PLOTS

Cobweb plot of the logistic map f(x) = rx(1 — x):

zp=0.2,7 =28 zo=0.8,r=0.9
1.0 1.0
0.8 0.8
® =
1 0.6 I 0.6
T T
I I
=04 =04
= =
0.2 0.2
0.0 0.0 / l\
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

@ il

Xt+1 = f(x¢) [blue line], x = y [red line]

zp=0.2,7 =28 zo=0.8,r=4.0
1.0 1.0
0.8 0.8
B 0
1 0.6 0.6
T T
I
=04 =04
= =
0.2 0.2 ;
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
T T

Fixed point x* = f(x*) stable (left) and unstable (right)

FIXED POINTS - STABILITY

FIXED POINTS

m Some maps do not have fixed points

m One example is the circle map (for specific parameters)

29=0.5,2=03,K =08

1.0

—~ 038

T

)

. sin(

_ K
b

z+Q

f(x)

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

LIPSCHITZ CONSTANTS

Lipschitz constant

Let X, Y be two metric spaces with distance measures dy and dy.
A function f : X — Y is called Lipschitz continuous if there exists
a constant c such that

dy(f(x1),f(%2)) < cdx(xq,%2)

The smallest constant c is called the Lipschitz constant

m Aspecial case is when f : R — R is differentiable

m In this case we have

d
&f (x)

X=X*

C = sup
X*

LIPSCHITZ CONSTANTS

m When f : R" — R" is differentiable then
¢ = sup [DF(x")llo

where Df(x*) is the Jacobi matrix evaluated at x* and ||-|, the
operator norm

B Let \i(x*),..., A\n(x*) denote the n eigenvalues of the Jacobi
matrix Df(x*), then

IBF(X*)llo = max | Ax((x7)|

BANACH FIXED-POINT THEOREM

Banach fixed-point theorem

Let (X, d) be a metric space and f : X — X a mapping such that

d(f(x1),f(x2)) < cd(Xs, %2)

with ¢ € [0,1), then f is called a contraction and it has a unique
and stable fixed point x* = lim¢_ 0 Xt11 = f(Xt)

m The Lipschitz constant c is an upper bound on the absolute
value of the slope of f

m For c € [0,1) the function f must cross the main diagonal

m Therefore, it must have a single fixed-point x*

COMPUTING RESNET INVERSES

m Assume that our ResNet layer f is sufficiently well behaving:

» No discontinuities

» Absolute value of the slope bounded everywhere by 1,
i.e.cefo,1)

» This can be achieved by constraining the eigenvalues of the
Jacobian during training

m In this case we should be able to iterate
Xt < f(Xt) = Xt41 — g(Xt)
until arriving at a (stable) fixed point x*

m The fixed point x* is our inverse

REFERENCES |

[§ ARDIZZONE, L., KRUSE, J., WIRKERT, S., RAHNER, D., PELLEGRINI, E. W.,
KLESSEN, R. S., MAIER-HEIN, L., ROTHER, C., AND KOTHE, U. (2018).
ANALYZING INVERSE PROBLEMS WITH INVERTIBLE NEURAL NETWORKS.
arXiv preprint arXiv:1808.04730.

[BEHRMANN, J., GRATHWOHL, W., CHEN, R. T., DUVENAUD, D., AND
JACOBSEN, J.-H. (2019).
INVERTIBLE RESIDUAL NETWORKS.
In International Conference on Machine Learning, pages 573-582.
PMLR.

[d DINH, L., KRUEGER, D., AND BENGIO, Y. (2014).
NICE: NON-LINEAR INDEPENDENT COMPONENTS ESTIMATION.
arXiv preprint arXiv:1410.8516.

[§ DINH, L., SOHL-DICKSTEIN, J., AND BENGIO, S. (2016).
DENSITY ESTIMATION USING REAL NVP.
arXiv preprint arXiv:1605.08803.

REFERENCES Il

[§ KoBYzEV, I., PRINCE, S.)., AND BRUBAKER, M. A. (2020).
NORMALIZING FLOWS: AN INTRODUCTION AND REVIEW OF CURRENT
METHODS.

IEEE transactions on pattern analysis and machine intelligence,

43(11):3964-3979.
[§ LoAIZA-GANEM, G., GAO, Y., AND CUNNINGHAM, J. P. (2017).

MAXIMUM ENTROPY FLOW NETWORKS.
arXiv preprint arXiv:1701.03504.

	Inverse problems
	Invertible neural networks (INNs)
	Invertible neural networks for surjective problems
	Normalizing Flows
	Inverses of residual neural networks
	Appendix

