Machine Learning in Bioinformatics

INVERTIBLE NEURAL NETWORKS

Philipp Benner
philipp.benner@bam.de
VP. 1 - eScience
Federal Institute of Materials Research and Testing (BAM)

April 25, 2024

OUTLINE

■ Inverse problems
■ Invertible Neural Networks (INNs) [Ardizzone et al., 2018]
■ Normalizing Flows

- Invertible ResNets

INVERSE PROBLEMS

Plato's Cave

ºsource: https://en.wikipedia.org/wiki/Allegory_of_the_cave

SHADOWS
 (effects)

Injective

Surjective

Bijective

INVERSE PROBLEMS - LINEAR ALGEBRA

- Given a linear equation

$$
y=A x
$$

where $A \in \mathbb{R}^{n \times p}, x \in \mathbb{R}^{p}$ and $y \in \mathbb{R}^{n}$
■ We can compute y if we have x given (and A of course)

- A is injective iff $\operatorname{rank}(A)=p \leq n$

■ A is surjective iff $\operatorname{rank}(A)=n \leq p$
■ A is bijective iff $\operatorname{rank}(A)=n=p \quad(\Rightarrow A$ is invertible $)$

$$
x=A^{-1} y
$$

INVERSE PROBLEMS - LINEAR ALGEBRA

■ A linear map defined by

$$
y=A x
$$

is invertible if A is a square matrix with full rank

- An affine map defined by

$$
y=A x+b
$$

is invertible under the same condition
■ Nonlinear functions are invertible iff they are strictly monotonic, but the inverse might be difficult to compute

INVERSE PROBLEMS - PROBABILITY

■ Assume X and Y are random variables such that $X \rightarrow Y$
■ The likelihood of an event $\{Y=y\}$ given $\{X=x\}$ is

$$
\operatorname{pr}(y \mid x)
$$

■ Bayes theorem tells us that

$$
\operatorname{pr}(\boldsymbol{x} \mid \boldsymbol{y})=\frac{\operatorname{pr}(\boldsymbol{y} \mid \boldsymbol{x}) \operatorname{pr}(\boldsymbol{x})}{\operatorname{pr}(\boldsymbol{y})}
$$

- The posterior distribution $\operatorname{pr}(x \mid y)$ is also called inverse probability

■ It allows us to compute the probability of a cause (x) from a given or observed effect $(y)^{1}$
${ }^{1}$ If $X \rightarrow Y$ is a causal relationship

THE ML APPROACH

- Data driven approach: Move most of our prior knowledge into data
■ Large n required!

The ML Approach

- Data driven approach: Move most of our prior knowledge into data
■ Large n required!

■ Inverse problem is surjective

The ML Approach

- Data driven approach: Move most of our prior knowledge into data
■ Large n required!

■ Inverse problem is surjective

INVERTIBLE NEURAL NETWORKS (INNs)

INVERTIBLE NEURAL NETWORKS (INNS)

Invertible neural network (INN)

A network f is bijective or invertible if it that has an inverse network $g=f^{-1}$ such that $x=(g \circ f)(x)$ for all input values x

■ There are multiple invertible architectures
■ Invertible neural networks are constructed by concatenating invertible subnetworks called coupling blocks

- For a network to be invertible, all coupling blocks must be invertible

■ There exist multiple architectures, e.g. GLOW, RNVP, NICE

Invertible neural networks (INNs) - NICE

■ Input x and output y are split into two halves, i.e.

$$
x=\left[x_{1}, x_{2}\right], \quad y=\left[y_{1}, y_{2}\right]
$$

■ The NICE coupling block is defined by [Dinh et al., 2014]

$$
\begin{aligned}
& y_{1}=x_{1} \\
& y_{2}=x_{2}+t\left(x_{1}\right)
\end{aligned}
$$

where t is an arbitrary function such as a neural network

- The inverse is given by

$$
\begin{aligned}
& x_{1}=y_{1} \\
& x_{2}=y_{2}-t\left(x_{1}\right)
\end{aligned}
$$

Invertible neural networks (INNs) - NICE

InVERTIBLE NEURAL NETWORKS (INNS) - RNVP

■ The RealNVP (RNVP) coupling block is defined by [Dinh et al., 2016]

$$
\begin{aligned}
& y_{1}=x_{1} \odot \exp \left[s_{2}\left(x_{2}\right)\right]+t_{2}\left(x_{2}\right) \\
& y_{2}=x_{2} \odot \exp \left[s_{1}\left(y_{1}\right)\right]+t_{1}\left(y_{1}\right)
\end{aligned}
$$

where \odot is the element-wise multiplication, input and output are split into two halves

$$
x=\left[x_{1}, x_{2}\right], \quad y=\left[y_{1}, y_{2}\right]
$$

and $t_{1}, t_{2}, s_{1}, s_{2}$ are arbitrary functions (e.g. dense neural networks)

■ Notice that this architecture is an affine function, which can be easily inverted

InVERTIBLE NEURAL NETWORKS (INNS) - RNVP

INVERTIBLE NEURAL NETWORKS (INNS) - RNVP

■ Inverting the neural network leads to

$$
\begin{array}{rlrl}
y_{1} & =x_{1} \odot \exp \left[s_{2}\left(x_{2}\right)\right]+t_{2}\left(x_{2}\right) \\
\Rightarrow & y_{1}-t_{2}\left(x_{2}\right) & =x_{1} \odot \exp \left[s_{2}\left(x_{2}\right)\right] \\
\Rightarrow & \left(y_{1}-t_{2}\left(x_{2}\right)\right) \odot \exp \left[-s_{2}\left(x_{2}\right)\right] & =x_{1}
\end{array}
$$

where x_{2} is obtained from

$$
\begin{array}{rlrl}
y_{2} & =x_{2} \odot \exp \left[s_{1}\left(y_{1}\right)\right]+t_{1}\left(y_{1}\right) \\
\Rightarrow & y_{2}-t_{1}\left(y_{1}\right) & =x_{2} \odot \exp \left[s_{1}\left(y_{1}\right)\right] \\
\Rightarrow & \left(y_{2}-t_{1}\left(y_{1}\right)\right) \odot \exp \left[-s_{1}\left(y_{1}\right)\right] & =x_{2}
\end{array}
$$

■ INNs typically stack many of these invertible blocks. The input components $\left(x^{(1)}, \ldots, x^{(p)}\right)$ of x are permuted after each block

INVERTIBLE NEURAL NETWORKS FOR SURJECTIVE PROBLEMS

■ Most problems in machine learning are surjective

■ Example: In object recognition there are typically many images that belong to the same classification

InVERTIBLE NEURAL NETWORKS (INNs)

- Let f be a trained neural network for predicting Y from some input variable X

■ Given a fixed output value y, compute the inverse by optimizing the input, i.e.

$$
\hat{x}=\underset{x}{\arg \min } \mathcal{L}(f(x), y)
$$

- The loss function \mathcal{L} should be the same as for learning the network weights

■ Use gradient descent to invert the neural network

■ For surjective problems the solution is not unique and depends on the initial condition

■ By testing multiple initial conditions, we may collect many possible inverse solutions

■ What initial conditions should we select?

■ How can we be sure that we obtained all important solutions?

■ Is there a better approach?

■ We extend the invertible network so that it generates (samples) all input values $\left\{x_{i}\right\}_{i}$ that correspond to a given output value y

■ Idea: Augment y with additional values z

■ Elements X that map to the same points in Y have to be mapped to different elements in Z

INVERTIBLE NEURAL NETWORKS (INNS)

Augmented targets

The invertible neural network f computes

$$
[y, z]=\left[f_{y}(x), f_{z}(x)\right]=f(x)
$$

for an input x, where $y=f_{y}(x)$ and $z=f_{z}(x)$

- If both y and z are given, we can easily compute the inverse

$$
x=g(y, z)=f^{-1}(y, z)
$$

■ The (intrinsic) dimension of $[y, z]$ must be greater or equal to the dimension of x

INVERTIBLE NEURAL NETWORKS (INNS)

■ Given only the target value y, what z value should we select?
■ z values that have never been observed during training will most likely result in unreasonable x values

■ We must constrain/regularize z. We want z to follow a particular distribution, e.g.

$$
z \sim \mathcal{N}(\mathrm{O}, \mathrm{I})
$$

where I is the identity matrix

- To obtain a possible inverse of y, we first draw z and compute

$$
x=g([y, z])=f^{-1}([y, z])
$$

Invertible neural networks (INNs) - LeArning

- We have two training objectives:
- Given a set of training points $\left(x_{i}, y_{i}\right)_{i}, f_{y}\left(x_{i}\right)$ should match y_{i} with respect to some metric defined by the loss function
- For any pair of inputs $\left(x_{i}, x_{j}\right)$ such that $f_{y}\left(x_{i}\right)=f_{y}\left(x_{j}\right)$ we want that $f_{z}\left(x_{i}\right) \neq f_{z}\left(x_{j}\right)$. In probabilistic terms we want that y and z are independent.
- Since we do not want to define a probability distribution for x and y, we will work with empirical distributions

$$
\hat{p}(x), \hat{p}(y)
$$

derived from our training data $\left(x_{i}, y_{i}\right)_{i}$
■ For simplicity, we also assume that $\operatorname{pr}(z)$ is given as empirical distribution $\hat{p}(z)$

Invertible neural networks (INNs) - LeArning

■ Formal definition of learning objectives

- Minimize $\mathcal{L}_{y}=\sum_{i}^{n}\left\|y_{i}-f_{y}\left(x_{i}\right)\right\|_{2}^{2}$ (or any other norm)
- Minimize $\mathcal{L}_{y, z}$ which measures the discrepancy between

$$
\hat{p}(y) \hat{p}(z) \text { and } \quad \hat{q}(y, z),
$$

where $\hat{q}(y, z)$ is the empirical distribution estimated on

$$
\left\{\left[\hat{y}_{i}, \hat{z}_{i}\right]=f\left(x_{i}\right) \mid i=1, \ldots, n\right\}
$$

i.e. the set of points $\left(\hat{y}_{i}, \hat{z}_{i}\right)_{i}$ resulting from applying the neural network f to training points $\left(x_{i}\right)_{i}$

■ We use the maximum mean discrepancy (MMD) to measure the discrepancy between two empirical distributions

INVERTIBLE NEURAL NETWORKS (INNs) - MMD

■ Assume we have two random variables X and Y
■ How can we measure the difference between their distributions?

■ Example: Look at the difference between expectations, i.e.

$$
\left\|\mathbb{E}_{X} X-\mathbb{E}_{Y} Y\right\|_{2}^{2}
$$

■ What if two different distributions have the same mean?

■ We need to incorporate higher moments, i.e.

$$
\left\|\mathbb{E}_{X}\left[\begin{array}{c}
X \\
X^{2}
\end{array}\right]-\mathbb{E}_{Y}\left[\begin{array}{c}
Y \\
Y^{2}
\end{array}\right]\right\|_{2}^{2}
$$

Invertible neural networks (INNs) - MMD

■ How many moments do we need?
■ Using a feature mapping ϕ we can incorporate as many as we want

Maximum mean discrepancy (MMD)

Given two random variables, X and Y, the MMD is defined as

$$
\operatorname{MMD}^{2}(X, Y)=\left\|\mathbb{E}_{X} \phi(X)-\mathbb{E}_{Y} \phi(Y)\right\|_{\mathcal{H}}^{2}
$$

where ϕ is a mapping into feature space \mathcal{H} equipped with an inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$ and the corresponding norm $\|x\|_{\mathcal{H}}^{2}=\langle x, x\rangle_{\mathcal{H}}$

INVERTIBLE NEURAL NETWORKS (INNs) - MMD

■ The kernel trick is used to efficiently compute the MMD
■ Let $\kappa(x, y)=\langle\phi(x), \phi(y)\rangle_{\mathcal{H}}$ denote the corresponding kernel function

- The MMD is expanded as follows

$$
\begin{aligned}
\operatorname{MMD}^{2}(X, Y)= & \left\|\mathbb{E}_{X} \phi(X)-\mathbb{E}_{Y} \phi(Y)\right\|_{\mathcal{H}}^{2} \\
= & \left\langle\mathbb{E}_{X} \phi(X), \mathbb{E}_{X^{\prime}} \phi\left(X^{\prime}\right)\right\rangle_{\mathcal{H}}+\left\langle\mathbb{E}_{Y} \phi(Y), \mathbb{E}_{Y^{\prime}} \phi\left(Y^{\prime}\right)\right\rangle_{\mathcal{H}} \\
& -2\left\langle\mathbb{E}_{X} \phi(X), \mathbb{E}_{Y} \phi(Y)\right\rangle_{\mathcal{H}} \\
= & \mathbb{E}_{X, X^{\prime}} \kappa\left(X, X^{\prime}\right)+\mathbb{E}_{Y, Y^{\prime}} \kappa\left(Y, Y^{\prime}\right)-2 \mathbb{E}_{X, Y} \kappa(X, Y)
\end{aligned}
$$

INVERTIBLE NEURAL NETWORKS (INNs) - MMD

- Empirical estimate of the MMD

■ Assume we have n i.i.d. samples x_{i} from X and m i.i.d. samples y_{i} from Y

$$
\mathbb{E}_{X, X^{\prime}} \kappa\left(X, X^{\prime}\right)=\frac{1}{n(n-1)} \sum_{i} \sum_{j \neq i} \kappa\left(x_{i}, x_{j}\right)
$$

where we have to exclude the case where $x_{i}=x_{j}$ because for continuous distributions this will happen with probability zero

$$
\mathbb{E}_{X, Y} \kappa(X, Y)=\frac{1}{n m} \sum_{i} \sum_{j} \kappa\left(x_{i}, y_{j}\right)
$$

NORMALIZING FLows

NORMALIZING FLOWS

■ Invertible neural networks are a special class of normalizing flows

- A Normalizing Flow is a transformation of a (simple) probability distribution into another (more complex) distribution [Kobyzev et al., 2020]

■ The transformation is computed using a sequence of invertible and differentiable mappings

■ Let Z be a random variable with a simple and tractable probability distribution, e.g. normal distribution

- Let Y be a random variable such that $Y=g(Z)$ where g is an invertible function, i.e. $g=f^{-1}$

NORMALIZING FLOWS

- Generative direction: To generate samples from Y we can sample from the simple distribution Z and use g to obtain Y
- Normalizing direction: If we have an observation $\{Y=y\}$ we can use f to compute the probability of y

NORMALIZING FLOWS

■ Using the change of variables formula, we obtain

$$
\begin{aligned}
\operatorname{pr}_{Y}(y) & =\operatorname{pr}_{Z}(f(y))|\operatorname{det} \operatorname{Df}(y)| \\
& =\operatorname{pr}_{Z}(f(y))|\operatorname{det} \operatorname{Dg}(f(y))|^{-1}
\end{aligned}
$$

where $\operatorname{Df}(y)$ denotes the Jacobian of f evaluated at y
■ If $f=f_{1} \circ f_{2} \circ \cdots \circ f_{k}$ is a sequence of invertible mappings f_{i} then

$$
\operatorname{det} D f(y)=\prod_{i=1}^{k} \operatorname{det} D f_{i}\left(y^{(i)}\right)
$$

where $y^{(i+1)}=f_{i}\left(y^{(i)}\right)$ and $y^{(1)}=y$

Normalizing flows - Training

■ Given a set of n observations $\left(y_{1}, \ldots, y_{n}\right)$
■ Maximum likelihood approach: Maximize the probability

$$
\begin{aligned}
\operatorname{pr}_{Y}\left(y_{1}, \ldots, y_{n}\right) & =\sum_{i=1}^{n} \log \operatorname{pr}_{Y}\left(y_{i}\right) \\
& =\sum_{i=1}^{n} p_{Z}\left(f\left(y_{i}\right)\right)+\log \left|\operatorname{det} \operatorname{Df}\left(y_{i}\right)\right|
\end{aligned}
$$

with respect to parameters of f (i.e. weights of neural network)

■ Use maximum entropy approach [Loaiza-Ganem et al., 2017]

INVERSES OF
RESIDUAL NEURAL NETWORKS

Inverse of ResNets

- Residual neural networks (ResNets) are a special case where the inverse can be computed without gradient descent (under some constraints) [Behrmann et al., 2019]

■ Recall that a layer of a ResNet is defined as

$$
x_{t+1}=x_{t}+g\left(x_{t}\right)
$$

where g is a non-linear neural network layer
■ The inverse is given by

$$
\begin{aligned}
x_{t} & =x_{t+1}-g\left(x_{t}\right) \\
& =f\left(x_{t}\right)
\end{aligned}
$$

where $f\left(x_{t}\right)=x_{t+1}-g\left(x_{t}\right)$ and x_{t+1} is treated as a parameter

FIXED POINTS - STABILITY

Fixed point

For a function f a point x^{*} that satisfies $x^{*}=f\left(x^{*}\right)$ is called a fixed point

- x_{t} is a fixed point of f, which is also the inverse of the ResNet with layer g
- A fixed point x^{*} is (locally) stable if

$$
\left|\frac{\mathrm{d}}{\mathrm{~d} x} f(x)\right|_{x=x^{*}}<1
$$

■ A fixed point x^{*} is (locally) unstable if

$$
\left|\frac{\mathrm{d}}{\mathrm{~d} x} f(x)\right|_{x=x^{*}}>1
$$

FIXED POINTS - COBWEB PLOTS

Cobweb plot of the logistic map $f(x)=r x(1-x)$:

$x_{t+1}=f\left(x_{t}\right)$ [blue line], $x=y$ [red line]

Fixed point $x^{*}=f\left(x^{*}\right)$ stable (left) and unstable (right)

FIXED POINTS

■ Some maps do not have fixed points
■ One example is the circle map (for specific parameters)

LIPSCHITZ CONSTANTS

Lipschitz constant

Let X, Y be two metric spaces with distance measures d_{X} and d_{Y}. A function $f: X \rightarrow Y$ is called Lipschitz continuous if there exists a constant c such that

$$
d_{y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq c d_{x}\left(x_{1}, x_{2}\right)
$$

The smallest constant c is called the Lipschitz constant

- A special case is when $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable
- In this case we have

$$
c=\sup _{x^{*}}\left|\frac{\mathrm{~d}}{\mathrm{~d} x} f(x)\right|_{x=x^{*}}
$$

LIPSCHITZ CONSTANTS

■ When $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is differentiable then

$$
c=\sup _{x^{*}}\left\|D f\left(x^{*}\right)\right\|_{0}
$$

where $\operatorname{Df}\left(x^{*}\right)$ is the Jacobi matrix evaluated at x^{*} and $\|\cdot\|_{0}$ the operator norm

■ Let $\lambda_{1}\left(x^{*}\right), \ldots, \lambda_{n}\left(x^{*}\right)$ denote the n eigenvalues of the Jacobi matrix $\operatorname{Df}\left(x^{*}\right)$, then

$$
\left\|D f\left(x^{*}\right)\right\|_{0}=\max _{k} \mid \lambda_{k}\left(\left(x^{*}\right) \mid\right.
$$

BANACH FIXED-POINT THEOREM

Banach fixed-point theorem

Let (X, d) be a metric space and $f: X \rightarrow X$ a mapping such that

$$
d\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq c d\left(x_{1}, x_{2}\right)
$$

with $c \in[0,1)$, then f is called a contraction and it has a unique and stable fixed point $x^{*}=\lim _{t \rightarrow \infty} x_{t+1}=f\left(x_{t}\right)$

■ The Lipschitz constant c is an upper bound on the absolute value of the slope of f

■ For $c \in[0,1)$ the function f must cross the main diagonal
■ Therefore, it must have a single fixed-point x^{*}

Computing ResNet inverses

■ Assume that our ResNet layer f is sufficiently well behaving:

- No discontinuities
- Absolute value of the slope bounded everywhere by 1 , i.e. $c \in[0,1)$
- This can be achieved by constraining the eigenvalues of the Jacobian during training

■ In this case we should be able to iterate

$$
x_{t} \leftarrow f\left(x_{t}\right)=x_{t+1}-g\left(x_{t}\right)
$$

until arriving at a (stable) fixed point x^{*}
■ The fixed point x^{*} is our inverse

References I

Ardizzone, L., Kruse, J., Wirkert, S., Rahner, D., Pellegrini, E. W., Klessen, R. S., Maier-Hein, L., Rother, C., and Köthe, U. (2018). ANALYZING INVERSE PROBLEMS WITH INVERTIBLE NEURAL NETWORKS. arXiv preprint arXiv:1808.04730.

國 Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D., AND JACOBSEN, J.-H. (2019).
INVERTIBLE RESIDUAL NETWORIS.
In International Conference on Machine Learning, pages 573-582. PMLR.

T- Dinh, L., Krueger, D., ANd Bengio, Y. (2014). Nice: NON-LINEAR INDEPENDENT COMPONENTS ESTIMATION. arXiv preprint arXiv:1410.8516.

Dinh, L., Sohl-Dickstein, J., ANd Bengio, S. (2016).
DENSITY ESTIMATION USING REAL NVP. arXiv preprint arXiv:1605.08803.

References II

R
Kobyzev, I., Prince, S. J., and Brubaker, M. A. (2020). Normalizing flows: AN introduction and review of current METHODS.
IEEE transactions on pattern analysis and machine intelligence, 43(11):3964-3979.
Loaiza-Ganem, G., Gao, Y., ANd Cunningham, J. P. (2017). MAXIMUM ENTROPY FLOW NETWORKS. arXiv preprint arXiv:1701.03504.

