
Machine Learning in Bioinformatics
Explainability - XAI

Philipp Benner
philipp.benner@bam.de

VP.1 - eScience
Federal Institute of Materials Research and Testing (BAM)

April 25, 2024

Introduction

Machine learning studies the relationship between
▶ independent or predictor variables X

▶ dependent or response variables Y

Machine learning and statistics may have multiple goals
[Zhao and Hastie, 2021]:
▶ Prediction: Predict the response variables Y as accurate at

possible from X

▶ Science: If X → Y is a causal relationship, we may want to
understand the laws of nature that determine this
relationship

1 61

Introduction

Two opposing cultures of statistical analysis [Breiman, 2001]:
▶ Data modeling culture: Assume a parametric function f such

that Y = f (X) + ϵ, where ϵ models the aleatoric uncertainty.
The parameters of f are often easy to interpret and the model
is used to understand the laws of nature

▶ Algorithmic modeling culture: Use of black-box models that
are very complex and optimized to maximize predictive
accuracy. Black-box models are notoriously difficult to
interpret and do barely allow to draw any conclusions about
the laws of nature

If we have a black-box model, how can we still gain some
interpretation?

2 61

Outline I

Assume we have a black-box machine learning model f

Can we gain some limited understanding of the predictions
of f?

Understanding the predictions increases our trust in f

3 61

Outline II

Given a fixed input x, what is the contribution of each feature
to the prediction y = f (x)?
(Attribution Map / Saliency Maps)
▶ Occlusion

▶ Layer-wise relevance propagation (LRP) / DeepLIFT

▶ Integrated gradients

▶ Shapley values

▶ SHAP

Given a fixed input x, is there an interpretable model that
approximates f locally?

4 61

Outline III

▶ Local interpretable model-agnostic explanations (LIME)

▶ Taylor approximations

What would f predict if we vary one or more features?
▶ Partial dependence plots (PDP)

▶ Individual conditional expectation (ICE)

What is the most likely input x for a given prediction
y = f (x)?
▶ Input optimization

5 61

Attribution maps

Attribution maps

Attribution maps are very popular with images, where the
attribution of each pixel can be easily visualized

Each input feature is assigned an attribution score (feature
attribution)

White shark Attribution map

[Kim et al., 2019]
6 61

Occlusion I

Occlusion is a perturbation method that masks part of the
input and measures the effect on the output of the network
[Ancona et al., 2017]

This method requires to evaluate the model for many
perturbations

The size of the mask is of particular importance

7 61

Occlusion II

Assume we have a network that detects whether an image
contains a cat

If there are multiple cats in the image, occluding parts of the
image with image patches (i.e. occluding at most one cat at a
time) will not change the output of the network

In this case, we would require masking multiple regions at
the same time

This leads to a combinatorial explosion

8 61

Gradient based explanations

Local explanations

X

Y

f

g

x~

9 61

Feature attribution

Given a fixed input x and the corresponding output y = f (x),
what input features contribute most to the output value y?

Note that for many applications (e.g. images) it is not very
valuable to know which features (e.g. pixels) contribute most
to the output of a neural network unless a specific input is
considered

The provided level of interpretability is hence limited to
individual input data points

10 61

Gradient I

Let f be a neural network or any other differentiable
machine learning model

Using the first-order Taylor expansion of f at an input x̃ we
approximate f as a linear function

f (x) ≈ f (x̃) +∇⊤x f (x̃)(x − x̃)

[Simonyan et al., 2013]

With w = ∇xf (x̃) and x′ = x − x̃ we obtain

f (x′) ≈ f (x̃) + w⊤x′

where the gradient w can be easily interpreted as feature
importances

11 61

Gradient × input I

Using the gradient alone is problematic

Let the network be defined as

f (x) = max{0, x − 10}

i.e. a single linear unit with ReLU activation

The gradient is given by

∇xf (x) =
{

1 if x > 10
0 otherwise

In this simple example, the larger x the larger the output
y = f (x) (assuming x > 10)

12 61

Gradient × input II

However, for f (20) we obtain the same attribution value as
for f (1000), i.e. 1 in both cases

Multiplying the gradient with the input x seems to improve
results [Shrikumar et al., 2016]

For f (20) we would obtain 20 as attribution value, whereas
for f (1000) the attribution is 1000

13 61

Integrated gradients I

Integrated gradients (IG): Consider the gradient along an
entire path from a baseline x0 to an input x̃
[Sundararajan et al., 2017]

IGj(x̃) = (x̃(j) − x(j)0)

∫
[0,1]

∂f (αx̃ + (1 − α)x0)

∂x̃(j)
dα

IG satisfies several convincing axioms that other methods
violate

14 61

Integrated gradients II

Axiom 1: Sensitivity
Assume that x0 and x̃ differ in at least one feature and that
f (x0) ̸= f (x̃). Clearly the features that differ between x0 and x̃
have some influence on the prediction. Hence, non-zero
attribution should be given to these features

Gradient and Gradient × input fail this axiom

Consider the following example with just one feature

f (x) = 1 − ReLU(1 − x)

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

15 61

Integrated gradients III

For x0 = 0 and x̃ = 2 we obtain f (x0) = 0 and f (x̃) = 1

However, the gradient at x̃ = 2 is zero

The sensitivity axiom is the complement of the dummy
property of Shapley values

16 61

Integrated gradients IV

Axiom 2: Implementation invariance
Let f and f ′ be two machine learning models. The two models are
functionally equivalent if f (x) = f ′(x) for all x. Attributions
should be identical for functionally equivalent models

Gradients are invariant to implementations

Several attribution methods fail this axiom, e.g. LRP and
DeepLIFT

17 61

Integrated gradients V

Axiom 3: Linearity
Let f be a machine learning model such that

f (x) = af1(x) + bf2(x)

where a and b are weights. The attribution for f is the sum of
attributions of f1 and f2 weighted by a and b

Attribution methods should preserve any linearity in the
machine learning models

18 61

Integrated gradients VI

Axiom 4: Completeness
Let f be a machine learning model. The attribution of all features
at a point x̃ should sum up to

f (x̃)− f (x0)

where x0 is a baseline

The completeness axiom corresponds to the efficiency
property of Shapley values for f (x0) = E f (X)

19 61

Layer-wise relevance
propagation (LRP)

Layer-wise relevance propagation (LRP) I

Layer-wise relevance propagation (LRP) [Bach et al., 2015]
exploints the layered structure of neural networks

Let f be a neural network with L layers

R(l) ∈ Rpl denotes a vector of relevance scores, one for each
neuron in the l-th layer

LRP satisfies the following law of conservation

f (x) = · · · =
pl+1∑
j=1

R(l+1)
j =

pl∑
j=1

R(l)
j =

p1∑
j=1

R(1)
j

where R(1)
j are the relevances of the input features

20 61

Layer-wise relevance propagation (LRP) II

The output of the neural network f for a given input x is the
total relevance, which is distributed among neurons in
previous layers

More specifically, we call any relevance attribution method
LRP if it satisfies

R(l)
i =

∑
k:i→k

R(l,l+1)
i←k

R(l+1)
k =

∑
i:i→k

R(l,l+1)
i←k

where R(l,l+1)
i←k is the relevance sent from neuron k to i

between layers l and l + 1

21 61

Layer-wise relevance propagation (LRP) III

The relevances are in both the forward and backward
direction sums of the relevances from connecting neurons

Multiple solutions satisfy these constraints
[Montavon et al., 2019], e.g.:
▶ Basic rule (LRP-0)

R(l,l+1)
i←k = R(l+1)

k
aiwik∑
j ajwjk

▶ Epsilon rule (LRP-ϵ)

R(l,l+1)
i←k = R(l+1)

k
aiwik

ϵ+
∑

j ajwjk

▶ ai denotes the activation of neuron i (i.e. the output of a
neuron before the non-linear activation is applied)

22 61

Layer-wise relevance propagation (LRP) IV

DeepLIFT [Shrikumar et al., 2017] is an extension of LRP that
backpropagates relevance values of

f (x̃)− f (x0)

where x0 is a user defined point that provides a baseline
prediction (note that LRP uses f (x0) = 0)

23 61

Local interpretable model-
agnostic explanations (LIME)

LIME - Basic idea

Local interpretable model-agnostic explanations (LIME)

Model-agnostic: We can evaluate the model f but do not
make any further assumptions about the model

In particular, we do not require the model to be
differentiable

LIME locally approximates a machine learning model f using
a simple interpretable model g at a specific point x̃ such that

f (x̃) = g(x̃)

and f (x) ≈ g(x) whenever x is close to x̃

g is typically a linear regression model

24 61

LIME - Basic idea

Given a model class G, we determine a local interpretable
model ĝ by solving

ĝ = argmin
g∈G

L(f ,g, πx̃) + Ω(g)

G could be the class of linear models

L is the main loss function we want to minimize

Ω(g) is a penalty on the complexity of g, which for instance
gives preference to models with fewer parameters

πx̃(x) is a weight function that measures the proximity of x to
x̃, whereby a local approximation of f is enforced

25 61

LIME - Basic idea

Let x1, . . . , xn be a set of n training points

For regression problems, the L function can be

L(f ,g, πx̃) =
∑

i

(f (xi)− g(xi))
2 πx̃(xi)

The weight function can be given by an exponential kernel

πx̃(xi) = exp

{
−d(x̃, xi)

2

σ2

}
where d is a distance function

σ2 controls how local the approximation should be

26 61

LIME - In practice I

The data used for training f might not be appropriate for
estimating g

We require samples (xi)i close to x̃, where LIME uses the
following scheme:
▶ Draw a binary vector bi of length p at random

▶ Compute xi = hx̃(bi)

The function hx̃ creates a sample xi from bi by masking parts
of the reference x̃ (occlusion)

27 61

LIME - In practice II

For instance, hx̃ could mask features by replacing them with
feature means x̄(j), i.e. the jth feature of xi = hx̃(bi) is given
by

x(j)i =

{
x̃(j) if b(j)

i = 1
x̄(j) if b(j)

i = 0

28 61

LIME - In practice III

Example topic models:
▶ A data point x is a word count vector, where each entry x(j)

denotes the number of occurrences of word j in a text
document

▶ hx̃(bi) could mask features by replacing them with zeros, i.e.

hx̃(bi) =

{
x̃(j) if b(j)

i = 1
0 if b(j)

i = 0

▶ Hence, samples xi are created from the reference x̃ by
replacing some of the counts with zeros

29 61

LIME - In practice IV

Example image classification:
▶ x is a an image, where each entry x(j) denotes a pixel or

super-pixel

▶ A sample xi = hx̃(bi) consists of the reference image x̃ where a
some pixels or super-pixels have been masked, as defined by
the binary vector bi

30 61

LIME - In practice V

The interpretable model g is typically defined on the
binarized points bi

The loss for regression problems then becomes

L(f ,g, πx̃) =
∑

i

(f (xi)− g(bi))
2 πx̃(xi)

31 61

Shapley values

Shapley values - Motivation

Assume a linear model

f (x) = θ1x(1) + θ2x(2) + · · ·+ θpx(p)

If features are standardized we can interpret the coefficient
θj as the global importance of the jth feature

Given a specific input x, the contribution of feature j to the
prediction f (x) is given by

ϕj(f , x) = θjx(j) − E
[
θjX(j)

]
= θj

(
x(j) − E

[
X(j)

])
assuming features are independent

32 61

Shapley values - Motivation I

For non-linear models we need a more advanced definition

Let F denote the set of p features and S ⊆ F a subset

Furthermore, let f (x(S)) be the prediction of a machine
learning model where only a subset of features S is used

Let S = F\{j}, then the contribution of the jth feature can be
measured as

f (x(S∪{j}))− f (x(S))

▶ f (x(S∪{j})) is the prediction with feature j

▶ f (x(S)) the prediction without feature j

33 61

Shapley values - Motivation II

In practice, features are rarely independent, i.e. feature j
might only be informative in combination with other features

In this case we have to attribute some of feature jth
contribution to those features

We have to test for all subsets S ⊆ F\{j}

34 61

Shapley values - Example I

Let the feature set F consist of p = 3 elements, i.e.
F = {1, 2, 3}

Assume we observe the following predictions
f (x({1})) = 100, f (x({1,2})) = 500,
f (x({2})) = 100, f (x({1,3})) = 300, f (x({1,2,3})) = 1100
f (x({3})) = 100, f (x({2,3})) = 300,

Clearly, features are not contributing independently to the
predictions

For independent features we would expect

f (x({1,2})) = f (x({1})) + f (x({2}))

35 61

Shapley values - Example II

How much should we attribute to each feature?

We fix a particular feature j and evaluate its contribution to
all subsets S ⊆ F\{j}

To simplify notation, let

ξj(S) = f (x(S∪{j}))− f (x(S))

For j = 3 and S = {1, 2} we have

ξj(S) = 1100 − 500 = 600

For j = 2 and S = {3} we have

ξj(S) = 300 − 100 = 200

36 61

Shapley values - Example III

ξj(S) denotes the contribution of feature j to the prediction
based on features S

The Shapley value for feature j is the average over all
contributions

We evaluate all p! permutations of p features, i.e.

1, 2, 3
1, 3, 2
2, 1, 3
2, 3, 1
3, 1, 2
3, 2, 1

37 61

Shapley values - Example IV

A permutation is interpreted as a sequence of features
entering the set of features S

For instance, for 2, 1, 3 we first have feature 2 entering S and
afterwards feature 1. Feature 3 is the last to join S

We then evaluate the contribution of each feature, i.e. for
2, 1, 3 we evaluate ξ2({}), ξ1({2}), and ξ3({1, 2})

38 61

Shapley values - Example V

j = 1 j = 2 j = 3
1,2,3 ξ1({}) = 100 ξ2({1}) = 400 ξ3({1, 2}) = 600
1,3,2 ξ1({}) = 100 ξ2({1, 3}) = 800 ξ3({1}) = 200
2,1,3 ξ1({2}) = 400 ξ2({}) = 100 ξ3({1, 2}) = 600
2,3,1 ξ1({2, 3}) = 800 ξ2({}) = 100 ξ3({2}) = 200
3,1,2 ξ1({3}) = 200 ξ2({1, 3}) = 800 ξ3({}) = 100
3,2,1 ξ1({2, 3}) = 800 ξ2({3}) = 200 ξ3({}) = 100

The rows are the permutations, the columns represent
features to enter the set S

The Shapley value ϕj(f , x) for feature j is the average over all
p! = |F|! rows in column j

Hence, permutations are assumed to be uniformly
distributed

39 61

Shapley values - Example VI

How often do we observe a particular entry ξj(S) in column j?

We can permute all features before j enters and all features
after j enters

Hence, an entry ξj(S) occurs

|S|!(|F| − |S| − 1)!

times in column j

40 61

Shapley values - Definition I

Shapley value [Shapley, 1951]
The shapley value for the jth feature is defined as

ϕj(f , x) =
∑

S⊆F\{j}

|S|!(|F| − |S| − 1)!
|F|! ξj(S)

=
∑

S⊆F\{j}

|S|!(|F| − |S| − 1)!
|F|!

(
f (x(S∪{j}))− f (x(S))

)

The sum is over 2p−1 permutations

For large feature sets the Shapley value is computationally
very expensive or even impossible to compute

41 61

Shapley values - Linear models I

Assume f is a linear model of the from

f (x) = θ1x(1) + θ2x(2) + · · ·+ θpx(p)

Given independent features, the Shapley values for this
model reduce to

ϕj(f , x) = θj

(
x(j) − E

[
X(j)

])
[Štrumbelj and Kononenko, 2014]

This is what we expected from our previous discussion

42 61

Shapley values - Properties I

Efficiency: ∑
j

ϕj(f , x) = f (x)− EX f (X)

Symmetry: If two features j and k contribute equally to all
subsets, then

ϕj(f , x) = ϕk(f , x)

for all x

Dummy: If feature j does not influence the prediction f (x(S))
for all S, then

ϕj(f , x) = 0

43 61

Shapley values - Properties II

Additivity: If f (x) =
∑

m fm(x) then

ϕj(f , x) =
∑

m
ϕj(fm, x)

i.e. f could be a random forest or any other bagging method

44 61

Shapley values - In practice I

How do we remove features from the prediction of our
machine learning model f?

The optimal but impractical way would be to train a model fS
for each subset S

Instead, we often use

f (x(S)) = E
[
f (X) | X(S) = x(S)

]
where all elements of X that are not given by {X(S) = x(S)}
are considered random

The expectation can be estimated from our training data,
which however requires many evaluations of the model f

45 61

Shapley values - In practice II

Assuming that our model f is linear, we obtain

f (x(S)) = E
[
f (X) | X(S) = x(S)

]
= f

(
E[X | X(S) = x(S)]

)
Furthermore, assuming independent features we obtain

f (x(S)) = f (x̄(S))

where

x̄(S) =
{

x(j) if j ∈ S
E X(j) if j /∈ S

i.e. all features not in S have been replaced by their
expectation

46 61

Shapley values - Monte Carlo I

Summing over 2p−1 contributions is often too expensive

We may utilize Monte Carlo approximations (law of large
numbers) to estimate the Shapley value
[Štrumbelj and Kononenko, 2014]
▶ Draw k permutation πi = (r1, . . . , rp) with rm ∈ {1, . . . ,p} from

a uniform distribution

▶ For each permutation πi, compute the set of features Sij from
πi, i.e. all features until feature j occurs in πi

▶ The Monte Carlo approximation of the Shapley value is given
by

ϕj(f , x) ≈
1
k

k∑
i=1

(
f (x(Sij∪{j}))− f (x(Sij))

)

47 61

Shapley values - Kernel SHAP I

SHapley Additive exPlanations (SHAP)
[Lundberg and Lee, 2017]

Kernel SHAP reformulates the computation of Shapley values
as a linear regression problem using the LIME framework

The interpretable model g is assumed to be a linear
regression model

g(bi) = ϕ0 +

p∑
j=1

ϕjb
(j)
i

i.e. the contributions of the linear model depend on the
weights ϕj and the binary values b(j)

i

48 61

Shapley values - Kernel SHAP II

The weights ϕj are the Shapley values

Notice that LIME with loss function

L(f ,g, πx̃) =
∑

i

(f (xi)− g(bi))
2 πx̃(xi)

and Ω(g) = 0 corresponds to weighted ordinary least
squares

θ̂ = argmin
θ

∥∥∥W1/2(y − Xθ)
∥∥∥2

2

= (X⊤WX)−1X⊤Wy

where X ∈ {0, 1}2p×p denotes a matrix containing all possible
binary vectors bi of length p as rows, W = (wii) is a weight

49 61

Shapley values - Kernel SHAP III

matrix with wii = πx̃(xi) and y = (yi) is the vector of targets
yi = f (xi)

The coefficients θ̂ are the Shapley values ϕ = (ϕ1, . . . , ϕp) for

πx̃(xi) =
p − 1(p

ki

)
ki(p − ki)

where ki = |bi| is the number of ones in the binary
representation of the ith sample

Notice that |bi| measures the similarity between xi and x,
therefore this particular choice of πx̃ is indeed a weight
based on a distance measured

50 61

Shapley values - Kernel SHAP IV

Recall that the ith sample xi is generated from x by randomly
generating a binary representation bi and afterwards
masking all features j in x̃ where b(j)

i = 0

The linear regression coefficients θ correspond to the
Shapley values ϕ only when we consider all possible binary
vectors bi

In practice, Kernel SHAP uses a sampled subset of binary
vectors

An improved method has been proposed
[Kwon and Zou, 2022]

51 61

Shapley values - Example

14 16 18 20 22

0 = ZN
0 = CHAS

4 = RAD
3.798 = DIS

307 = TAX
0.538 = NOX

376.57 = B
8.14 = INDUS
1.252 = CRIM

98.1 = AGE
21 = PTRATIO

5.57 = RM
21.02 = LSTAT

 ZN
 CHAS

 RAD
 DIS
 TAX
 NOX

 B
 INDUS
 CRIM
 AGE

 PTRATIO
 RM

 LSTAT

+0.09

+0.06

3.24
2.57

0.89
0.74

0.59
0.21

0.12

0.08

0.03
0.01

0

E[f(X)] = 22.28

f(x) = 13.933

52 61

Partial Dependence Plot

Partial Dependence Plot

Let f be a black-box model such as a neural network

What is the effect of individual predictors X(j) on the
response variable Y as captured by our model f?

53 61

Partial Dependence Plot

Partial dependence plots (PDP) [Friedman, 2001]:

PDPj(x) =
∫

f (x, x(−j))pr(x(−j))dx(−j)

where x(−j) = (x(1), . . . , x(j−1), x(j+1), . . . x(p))

In practice we use the training data (xi, yi)
n
i=1 to estimate the

PDP, i.e.

P̂DPj(x) =
1
n

n∑
i=1

f (x, x(−j)
i)

54 61

Partial Dependence Plot - Example

Boston housing data: Housing data for 506 census tracts of
Boston from the 1970 census

X: capita crime rate, proportion of non-retail business acres
per town, nitric oxides concentration, average number of
rooms per dwelling, proportion of owner-occupied units
built prior to 1940, . . .

Y: median value of owner-occupied homes in USD 1000’s

55 61

Partial Dependence Plot - Example

0.4 0.5 0.6 0.7 0.8

22
.0

22
.5

23
.0

23
.5

Partial Dependence Plot (PDP)

Nitric Oxides Concentration

M
ed

ia
n

H
ou

si
ng

 P
ric

e

Housing prices drop when nitric oxides concentration
reaches ∼ 0.68

56 61

Partial Dependence Plot - Example

0 20 40 60 80

21
.8

22
.2

22
.6

23
.0

Partial Dependence Plot (PDP)

Crime Rate

M
ed

ia
n

H
ou

si
ng

 P
ric

e

Housing prices drop quickly with crime rate

57 61

Partial Dependence Plot - ICE

The individual conditional expectation (ICE) is an extension
of the PDP

It plots each component of the PDP sum individually, i.e.

ÎCEij(x) = f (x, x(−j)
i)

Hence, we have

P̂DPj(x) =
1
n

n∑
i=1

ÎCEij(x)

58 61

Input Optimization

Input optimization I

Assume that f is a classifier for images

We want to find inputs x not contained in the training set
that correspond to predictions of a given classification

This analysis might help to understand if f is sensitive to the
correct features

For a given output y we solve the optimization problem

x̂ = argmin
x

L(f (x), y)

The loss function L typically corresponds to the loss
function used for training f

59 61

Input optimization II

As for training f we may use gradient descent to compute x̂

The result x̂ depends strongly on the initial value for solving
the optimization problem

Using multiple initial conditions allows to generate multiple
inputs (xi)i corresponding to the same prediction y

60 61

Software

SHAP:
https://shap.readthedocs.io

iNNvestigate (Keras/Tensorflow):
https://github.com/albermax/innvestigate

Captum (PyTorch):
https://github.com/pytorch/captum

61 / 61

https://shap.readthedocs.io
https://github.com/albermax/innvestigate
https://github.com/pytorch/captum

References I

Ancona, M., Ceolini, E., Öztireli, C., and Gross, M. (2017).
Towards better understanding of gradient-based attribution
methods for deep neural networks.
arXiv preprint arXiv:1711.06104.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., and
Samek, W. (2015).
On pixel-wise explanations for non-linear classifier decisions
by layer-wise relevance propagation.
PloS one, 10(7):e0130140.

Breiman, L. (2001).
Statistical modeling: The two cultures (with comments and a
rejoinder by the author).
Statistical science, 16(3):199–231.

Friedman, J. H. (2001).
Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189–1232.

References II

Kim, B., Seo, J., Jeon, S., Koo, J., Choe, J., and Jeon, T. (2019).
Why are saliency maps noisy? cause of and solution to noisy
saliency maps.
In 2019 IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW), pages 4149–4157. IEEE.

Kwon, Y. and Zou, J. (2022).
Weightedshap: analyzing and improving shapley based feature
attributions.
arXiv preprint arXiv:2209.13429.

Lundberg, S. M. and Lee, S.-I. (2017).
A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30.

References III

Montavon, G., Binder, A., Lapuschkin, S., Samek, W., and Müller,
K.-R. (2019).
Layer-wise relevance propagation: an overview.
Explainable AI: interpreting, explaining and visualizing deep
learning, pages 193–209.

Shapley, L. S. (1951).
Notes on the n-person game—ii: The value of an n-person
game.(1951).
U.S. Airforce PROJECT RAND - Research Memorandum.

Shrikumar, A., Greenside, P., and Kundaje, A. (2017).
Learning important features through propagating activation
differences.
In International conference on machine learning, pages 3145–3153.
PMLR.

References IV

Shrikumar, A., Greenside, P., Shcherbina, A., and Kundaje, A.
(2016).
Not just a black box: Learning important features through
propagating activation differences.
arXiv preprint arXiv:1605.01713.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013).
Deep inside convolutional networks: Visualising image
classification models and saliency maps.
arXiv preprint arXiv:1312.6034.

Štrumbelj, E. and Kononenko, I. (2014).
Explaining prediction models and individual predictions with
feature contributions.
Knowledge and information systems, 41(3):647–665.

References V

Sundararajan, M., Taly, A., and Yan, Q. (2017).
Axiomatic attribution for deep networks.
In International conference on machine learning, pages 3319–3328.
PMLR.
Zhao, Q. and Hastie, T. (2021).
Causal interpretations of black-box models.
Journal of Business & Economic Statistics, 39(1):272–281.

	Attribution maps
	Gradient based explanations
	Layer-wise relevance propagation (LRP)
	Local interpretable model- agnostic explanations (LIME)
	Shapley values
	Partial Dependence Plot
	Input Optimization
	Appendix

