Machine Learning in Bioinformatics

EXPLAINABILITY - XAI

Philipp Benner
philipp.benner@bam.de
VP. 1 - eScience
Federal Institute of Materials Research and Testing (BAM)

April 25, 2024

INTRODUCTION

■ Machine learning studies the relationship between

- independent or predictor variables X
- dependent or response variables Y

■ Machine learning and statistics may have multiple goals [Zhao and Hastie, 2021]:

- Prediction: Predict the response variables Y as accurate at possible from X
- Science: If $X \rightarrow Y$ is a causal relationship, we may want to understand the laws of nature that determine this relationship

INTRODUCTION

■ Two opposing cultures of statistical analysis [Breiman, 2001]:

- Data modeling culture: Assume a parametric function f such that $Y=f(X)+\epsilon$, where ϵ models the aleatoric uncertainty. The parameters of f are often easy to interpret and the model is used to understand the laws of nature
- Algorithmic modeling culture: Use of black-box models that are very complex and optimized to maximize predictive accuracy. Black-box models are notoriously difficult to interpret and do barely allow to draw any conclusions about the laws of nature

■ If we have a black-box model, how can we still gain some interpretation?

OUTLINE I

■ Assume we have a black-box machine learning model f
■ Can we gain some limited understanding of the predictions of f ?

■ Understanding the predictions increases our trust in f

Outline II

■ Given a fixed input x, what is the contribution of each feature to the prediction $y=f(x)$?
(Attribution Map / Saliency Maps)

- Occlusion
- Layer-wise relevance propagation (LRP) / DeepLIFT
- Integrated gradients
- Shapley values
- SHAP

■ Given a fixed input x, is there an interpretable model that approximates f locally?

Outline III

- Local interpretable model-agnostic explanations (LIME)
- Taylor approximations

■ What would f predict if we vary one or more features?

- Partial dependence plots (PDP)
- Individual conditional expectation (ICE)

■ What is the most likely input x for a given prediction $y=f(x)$?

- Input optimization

ATTRIBUTION MAPS

ATTRIBUTION MAPS

■ Attribution maps are very popular with images, where the attribution of each pixel can be easily visualized

■ Each input feature is assigned an attribution score (feature attribution)

[Kim et al., 2019]

OcCLUSION I

- Occlusion is a perturbation method that masks part of the input and measures the effect on the output of the network [Ancona et al., 2017]
- This method requires to evaluate the model for many perturbations

■ The size of the mask is of particular importance

OcCLUSION II

■ Assume we have a network that detects whether an image contains a cat

- If there are multiple cats in the image, occluding parts of the image with image patches (i.e. occluding at most one cat at a time) will not change the output of the network
- In this case, we would require masking multiple regions at the same time
- This leads to a combinatorial explosion

GRADIENT BASED EXPLANATIONS

LOCAL EXPLANATIONS

- Given a fixed input x and the corresponding output $y=f(x)$, what input features contribute most to the output value y ?

■ Note that for many applications (e.g. images) it is not very valuable to know which features (e.g. pixels) contribute most to the output of a neural network unless a specific input is considered

- The provided level of interpretability is hence limited to individual input data points

GRADIENT I

■ Let f be a neural network or any other differentiable machine learning model

■ Using the first-order Taylor expansion of f at an input \tilde{x} we approximate f as a linear function

$$
f(x) \approx f(\tilde{x})+\nabla_{x}^{\top} f(\tilde{x})(x-\tilde{x})
$$

[Simonyan et al., 2013]
■ With $w=\nabla_{x} f(\tilde{x})$ and $x^{\prime}=x-\tilde{x}$ we obtain

$$
f\left(x^{\prime}\right) \approx f(\tilde{x})+w^{\top} x^{\prime}
$$

where the gradient w can be easily interpreted as feature importances

GRADIENT \times INPUT I

■ Using the gradient alone is problematic

- Let the network be defined as

$$
f(x)=\max \{0, x-10\}
$$

i.e. a single linear unit with ReLU activation

■ The gradient is given by

$$
\nabla_{x} f(x)= \begin{cases}1 & \text { if } x>10 \\ 0 & \text { otherwise }\end{cases}
$$

■ In this simple example, the larger x the larger the output $y=f(x)$ (assuming $x>10$)

GRADIENT \times INPUT II

■ However, for $f(20)$ we obtain the same attribution value as for $f(1000)$, i.e. 1 in both cases

■ Multiplying the gradient with the input x seems to improve results [Shrikumar et al., 2016]

■ For $f(20)$ we would obtain 20 as attribution value, whereas for $f(1000)$ the attribution is 1000

INTEGRATED GRADIENTS I

■ Integrated gradients (IG): Consider the gradient along an entire path from a baseline x_{0} to an input \tilde{x} [Sundararajan et al., 2017]

$$
\mathrm{IG}_{j}(\tilde{x})=\left(\tilde{x}^{(j)}-x_{0}^{(j)}\right) \int_{[0,1]} \frac{\partial f\left(\alpha \tilde{x}+(1-\alpha) x_{0}\right)}{\partial \tilde{x}^{(j)}} \mathrm{d} \alpha
$$

■ IG satisfies several convincing axioms that other methods violate

INTEGRATED GRADIENTS II

Axiom 1: Sensitivity

Assume that x_{0} and \tilde{x} differ in at least one feature and that $f\left(x_{0}\right) \neq f(\tilde{x})$. Clearly the features that differ between x_{0} and \tilde{x} have some influence on the prediction. Hence, non-zero attribution should be given to these features

- Gradient and Gradient \times input fail this axiom

■ Consider the following example with just one feature

$$
f(x)=1-\operatorname{ReLU}(1-x)
$$

INTEGRATED GRADIENTS III

■ For $x_{0}=0$ and $\tilde{x}=2$ we obtain $f\left(x_{0}\right)=0$ and $f(\tilde{x})=1$

- However, the gradient at $\tilde{x}=2$ is zero

■ The sensitivity axiom is the complement of the dummy property of Shapley values

INTEGRATED GRADIENTS IV

Axiom 2: Implementation invariance

Let f and f^{\prime} be two machine learning models. The two models are functionally equivalent if $f(x)=f^{\prime}(x)$ for all x. Attributions should be identical for functionally equivalent models

- Gradients are invariant to implementations

■ Several attribution methods fail this axiom, e.g. LRP and DeepLIFT

INTEGRATED GRADIENTS V

Axiom 3: Linearity

Let f be a machine learning model such that

$$
f(x)=a f_{1}(x)+b f_{2}(x)
$$

where a and b are weights. The attribution for f is the sum of attributions of f_{1} and f_{2} weighted by a and b

■ Attribution methods should preserve any linearity in the machine learning models

INTEGRATED GRADIENTS VI

Axiom 4: Completeness

Let f be a machine learning model. The attribution of all features at a point \tilde{x} should sum up to

$$
f(\tilde{x})-f\left(x_{0}\right)
$$

where x_{0} is a baseline
■ The completeness axiom corresponds to the efficiency property of Shapley values for $f\left(x_{0}\right)=\mathbb{E} f(X)$

LAYER-WISE RELEVANCE PROPAGATION (LRP)

LAYER-WISE RELEVANCE PROPAGATION (LRP) I

■ Layer-wise relevance propagation (LRP) [Bach et al., 2015] exploints the layered structure of neural networks

■ Let f be a neural network with L layers
■ $R^{(l)} \in \mathbb{R}^{p_{l}}$ denotes a vector of relevance scores, one for each neuron in the l-th layer

■ LRP satisfies the following law of conservation

$$
f(x)=\cdots=\sum_{j=1}^{p_{l+1}} R_{j}^{(l+1)}=\sum_{j=1}^{p_{l}} R_{j}^{(l)}=\sum_{j=1}^{p_{1}} R_{j}^{(1)}
$$

where $R_{j}^{(1)}$ are the relevances of the input features

LAYER-WISE RELEVANCE PROPAGATION (LRP) II

■ The output of the neural network f for a given input x is the total relevance, which is distributed among neurons in previous layers

■ More specifically, we call any relevance attribution method LRP if it satisfies

$$
\begin{aligned}
& R_{i}^{(l)}=\sum_{k: i \rightarrow k} R_{i \leftarrow k}^{(l, l+1)} \\
& R_{k}^{(l+1)}=\sum_{i: i \rightarrow k} R_{i \leftarrow k}^{(l, l+1)}
\end{aligned}
$$

where $R_{i \leftarrow k}^{(l, l+1)}$ is the relevance sent from neuron k to i between layers l and $l+1$

LayER-WISE RELEVANCE PROPAGATION (LRP) III

■ The relevances are in both the forward and backward direction sums of the relevances from connecting neurons

■ Multiple solutions satisfy these constraints [Montavon et al., 2019], e.g.:

- Basic rule (LRP-o)

$$
R_{i \leftarrow k}^{(l, l+1)}=R_{k}^{(l+1)} \frac{a_{i} w_{i k}}{\sum_{j} a_{j} w_{j k}}
$$

- Epsilon rule (LRP- ϵ)

$$
R_{i \leftarrow k}^{(l, l+1)}=R_{k}^{(l+1)} \frac{a_{i} w_{i k}}{\epsilon+\sum_{j} a_{j} w_{j k}}
$$

- a_{i} denotes the activation of neuron i (i.e. the output of a neuron before the non-linear activation is applied)

LAYER-WISE RELEVANCE PROPAGATION (LRP) IV

■ DeepLIFT [Shrikumar et al., 2017] is an extension of LRP that backpropagates relevance values of

$$
f(\tilde{x})-f\left(x_{0}\right)
$$

where x_{0} is a user defined point that provides a baseline prediction (note that LRP uses $f\left(x_{0}\right)=0$)

LOCAL INTERPRETABLE MODEL-

 AGNOSTIC EXPLANATIONS (LIME)
LIME - BASIC IDEA

■ Local interpretable model-agnostic explanations (LIME)
■ Model-agnostic: We can evaluate the model f but do not make any further assumptions about the model

■ In particular, we do not require the model to be differentiable

■ LIME locally approximates a machine learning model f using a simple interpretable model g at a specific point \tilde{x} such that

$$
f(\tilde{x})=g(\tilde{x})
$$

and $f(x) \approx g(x)$ whenever x is close to \tilde{x}
■ g is typically a linear regression model

LIME - BASIC IDEA

■ Given a model class G, we determine a local interpretable model \hat{g} by solving

$$
\hat{g}=\underset{g \in G}{\arg \min } \mathcal{L}\left(f, g, \pi_{\tilde{\chi}}\right)+\Omega(g)
$$

■ G could be the class of linear models

- \mathcal{L} is the main loss function we want to minimize
$\square \Omega(g)$ is a penalty on the complexity of g, which for instance gives preference to models with fewer parameters

■ $\pi_{\tilde{x}}(x)$ is a weight function that measures the proximity of x to \tilde{x}, whereby a local approximation of f is enforced

LIME - BASIC IDEA

■ Let x_{1}, \ldots, x_{n} be a set of n training points
■ For regression problems, the \mathcal{L} function can be

$$
\mathcal{L}\left(f, g, \pi_{\tilde{\chi}}\right)=\sum_{i}\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right)^{2} \pi_{\tilde{x}}\left(x_{i}\right)
$$

■ The weight function can be given by an exponential kernel

$$
\pi_{\tilde{x}}\left(x_{i}\right)=\exp \left\{-\frac{d\left(\tilde{x}, x_{i}\right)^{2}}{\sigma^{2}}\right\}
$$

where d is a distance function
■ σ^{2} controls how local the approximation should be

LIME - IN PRACTICE I

■ The data used for training f might not be appropriate for estimating g

- We require samples $\left(x_{i}\right)_{i}$ close to \tilde{x}, where LIME uses the following scheme:
- Draw a binary vector b_{i} of length p at random
- Compute $x_{i}=h_{\tilde{x}}\left(b_{i}\right)$

■ The function $h_{\tilde{x}}$ creates a sample x_{i} from b_{i} by masking parts of the reference \tilde{x} (occlusion)

LIME - IN PRACTICE II

■ For instance, $h_{\tilde{x}}$ could mask features by replacing them with feature means $\bar{x}^{(j)}$, i.e. the j th feature of $x_{i}=h_{\tilde{x}}\left(b_{i}\right)$ is given by

$$
x_{i}^{(j)}= \begin{cases}\tilde{x}^{(j)} & \text { if } b_{i}^{(j)}=1 \\ \bar{x}^{(j)} & \text { if } b_{i}^{(j)}=0\end{cases}
$$

LIME - IN PRACTICE III

■ Example topic models:

- A data point x is a word count vector, where each entry $x^{(j)}$ denotes the number of occurrences of word j in a text document
- $h_{\tilde{x}}\left(b_{i}\right)$ could mask features by replacing them with zeros, i.e.

$$
h_{\tilde{x}}\left(b_{i}\right)= \begin{cases}\tilde{x}^{(j)} & \text { if } b_{i}^{(j)}=1 \\ 0 & \text { if } b_{i}^{(j)}=0\end{cases}
$$

- Hence, samples x_{i} are created from the reference \tilde{x} by replacing some of the counts with zeros

LIME - IN PRACTICE IV

- Example image classification:
- x is a an image, where each entry $x^{(j)}$ denotes a pixel or super-pixel
- A sample $x_{i}=h_{\tilde{x}}\left(b_{i}\right)$ consists of the reference image \tilde{x} where a some pixels or super-pixels have been masked, as defined by the binary vector b_{i}

Original Image

Interpretable Components

LIME - IN PRACTICE V

■ The interpretable model g is typically defined on the binarized points b_{i}

- The loss for regression problems then becomes

$$
\mathcal{L}\left(f, g, \pi_{\tilde{\chi}}\right)=\sum_{i}\left(f\left(x_{i}\right)-g\left(b_{i}\right)\right)^{2} \pi_{\tilde{\chi}}\left(x_{i}\right)
$$

SHAPLEY VALUES

Shapley values - Motivation

■ Assume a linear model

$$
f(x)=\theta_{1} x^{(1)}+\theta_{2} x^{(2)}+\cdots+\theta_{p} x^{(p)}
$$

■ If features are standardized we can interpret the coefficient θ_{j} as the global importance of the j th feature

■ Given a specific input x, the contribution of feature j to the prediction $f(x)$ is given by

$$
\begin{aligned}
\phi_{j}(f, x) & =\theta_{j} x^{(j)}-\mathbb{E}\left[\theta_{j} x^{(j)}\right] \\
& =\theta_{j}\left(x^{(j)}-\mathbb{E}\left[x^{(j)}\right]\right)
\end{aligned}
$$

assuming features are independent

Shapley values - Motivation I

■ For non-linear models we need a more advanced definition
■ Let F denote the set of p features and $S \subseteq F$ a subset
■ Furthermore, let $f\left(x^{(S)}\right)$ be the prediction of a machine learning model where only a subset of features S is used

■ Let $S=F \backslash\{j\}$, then the contribution of the j th feature can be measured as

$$
f\left(x^{(S \cup\{j\})}\right)-f\left(x^{(S)}\right)
$$

- $f\left(x^{(S \cup\{j\})}\right)$ is the prediction with feature j
- $f\left(x^{(S)}\right)$ the prediction without feature j

Shapley values - Motivation II

■ In practice, features are rarely independent, i.e. feature j might only be informative in combination with other features

■ In this case we have to attribute some of feature j th contribution to those features

■ We have to test for all subsets $S \subseteq F \backslash\{j\}$

SHAPLEY VALUES - EXAMPLE I

■ Let the feature set F consist of $p=3$ elements, i.e.

$$
F=\{1,2,3\}
$$

■ Assume we observe the following predictions

$$
\begin{array}{ll}
f\left(x^{(\{1\})}\right)=100, & f\left(x^{(\{1,2\})}\right)=500, \\
f\left(x^{(\{2\})}\right)=100, & f\left(x^{(\{1,3\})}\right)=300, \\
f\left(x^{(\{3\})}\right)=100, & f\left(x^{(\{2,3\})}\right)=300,
\end{array}
$$

■ Clearly, features are not contributing independently to the predictions

■ For independent features we would expect

$$
f\left(x^{(\{1,2\})}\right)=f\left(x^{(\{1\})}\right)+f\left(x^{(\{2\})}\right)
$$

Shapley values - EXAMPLE II

■ How much should we attribute to each feature?
■ We fix a particular feature j and evaluate its contribution to all subsets $S \subseteq F \backslash\{j\}$

■ To simplify notation, let

$$
\xi_{j}(S)=f\left(x^{(S \cup\{j\})}\right)-f\left(x^{(S)}\right)
$$

■ For $j=3$ and $S=\{1,2\}$ we have

$$
\xi_{j}(S)=1100-500=600
$$

■ For $j=2$ and $S=\{3\}$ we have

$$
\xi_{j}(S)=300-100=200
$$

Shapley values - EXample III

■ $\xi_{j}(S)$ denotes the contribution of feature j to the prediction based on features S

■ The Shapley value for feature j is the average over all contributions

■ We evaluate all p ! permutations of p features, i.e.

$$
\begin{aligned}
& 1,2,3 \\
& 1,3,2 \\
& 2,1,3 \\
& 2,3,1 \\
& 3,1,2 \\
& 3,2,1
\end{aligned}
$$

Shapley values - EXample IV

- A permutation is interpreted as a sequence of features entering the set of features S

■ For instance, for 2, 1, 3 we first have feature 2 entering S and afterwards feature 1. Feature 3 is the last to join S

■ We then evaluate the contribution of each feature, i.e. for $2,1,3$ we evaluate $\xi_{2}(\{ \}), \xi_{1}(\{2\})$, and $\xi_{3}(\{1,2\})$

Shapley values - Example V

	$j=1$		$j=2$		$j=3$	
$1,2,3$	$\xi_{1}(\{ \})$	$=100$	$\xi_{2}(\{1\})$	$=400$	$\xi_{3}(\{1,2\})$	$=600$
$1,3,2$	$\xi_{1}(\{ \})$	$=100$	$\xi_{2}(\{1,3\})$	$=800$	$\xi_{3}(\{1\})$	$=200$
$2,1,3$	$\xi_{1}(\{2\})$	$=400$	$\xi_{2}(\{ \})$	$=100$	$\xi_{3}(\{1,2\})$	$=600$
$2,3,1$	$\xi_{1}(\{2,3\})$	$=800$	$\xi_{2}(\{ \})$	$=100$	$\xi_{3}(\{2\})$	$=200$
$3,1,2$	$\xi_{1}(\{3\})$	$=200$	$\xi_{2}(\{1,3\})$	$=800$	$\xi_{3}(\{ \})$	$=100$
$3,2,1$	$\xi_{1}(\{2,3\})$	$=800$	$\xi_{2}(\{3\})$	$=200$	$\xi_{3}(\{ \})$	$=100$

■ The rows are the permutations, the columns represent features to enter the set S

■ The Shapley value $\phi_{j}(f, x)$ for feature j is the average over all $p!=|F|$! rows in column j

■ Hence, permutations are assumed to be uniformly distributed

Shapley values - Example VI

■ How often do we observe a particular entry $\xi_{j}(S)$ in column j ?
■ We can permute all features before j enters and all features after j enters

- Hence, an entry $\xi_{j}(S)$ occurs

$$
|S|!(|F|-|S|-1)!
$$

times in column j

Shapley values - Definition I

Shapley value [Shapley, 1951]

The shapley value for the j th feature is defined as

$$
\begin{aligned}
\phi_{j}(f, x) & =\sum_{S \subseteq F \backslash\{j\}} \frac{|S|!(|F|-|S|-1)!}{|F|!} \xi_{j}(S) \\
& =\sum_{S \subseteq F \backslash\{j\}} \frac{|S|!(|F|-|S|-1)!}{|F|!}\left(f\left(x^{(S \cup\{j\})}\right)-f\left(x^{(S)}\right)\right)
\end{aligned}
$$

■ The sum is over 2^{p-1} permutations

■ For large feature sets the Shapley value is computationally very expensive or even impossible to compute

Shapley values - Linear models I

■ Assume f is a linear model of the from

$$
f(x)=\theta_{1} x^{(1)}+\theta_{2} x^{(2)}+\cdots+\theta_{p} x^{(p)}
$$

■ Given independent features, the Shapley values for this model reduce to

$$
\phi_{j}(f, x)=\theta_{j}\left(x^{(j)}-\mathbb{E}\left[x^{(j)}\right]\right)
$$

[Štrumbelj and Kononenko, 2014]
■ This is what we expected from our previous discussion

Shapley values - Properties I

- Efficiency:

$$
\sum_{j} \phi_{j}(f, x)=f(x)-\mathbb{E}_{X} f(X)
$$

■ Symmetry: If two features j and k contribute equally to all subsets, then

$$
\phi_{j}(f, x)=\phi_{k}(f, x)
$$

for all x

- Dummy: If feature j does not influence the prediction $f\left(x^{(S)}\right)$ for all S, then

$$
\phi_{j}(f, x)=0
$$

Shapley values - Properties II

- Additivity: If $f(x)=\sum_{m} f_{m}(x)$ then

$$
\phi_{j}(f, x)=\sum_{m} \phi_{j}\left(f_{m}, x\right)
$$

i.e. f could be a random forest or any other bagging method

Shapley values - IN practice I

■ How do we remove features from the prediction of our machine learning model f ?

■ The optimal but impractical way would be to train a model f_{S} for each subset S

■ Instead, we often use

$$
f\left(x^{(S)}\right)=\mathbb{E}\left[f(X) \mid X^{(S)}=x^{(S)}\right]
$$

where all elements of X that are not given by $\left\{X^{(S)}=X^{(S)}\right\}$ are considered random

■ The expectation can be estimated from our training data, which however requires many evaluations of the model f

Shapley values - IN practice II

■ Assuming that our model f is linear, we obtain

$$
f\left(x^{(S)}\right)=\mathbb{E}\left[f(X) \mid X^{(S)}=x^{(S)}\right]=f\left(\mathbb{E}\left[X \mid X^{(S)}=x^{(S)}\right]\right)
$$

■ Furthermore, assuming independent features we obtain

$$
f\left(x^{(S)}\right)=f\left(\bar{x}^{(S)}\right)
$$

where

$$
\bar{x}^{(S)}= \begin{cases}x^{(j)} & \text { if } j \in S \\ \mathbb{E} X^{(j)} & \text { if } j \notin S\end{cases}
$$

i.e. all features not in S have been replaced by their expectation

Shapley values - Monte Carlo I

■ Summing over 2^{p-1} contributions is often too expensive
■ We may utilize Monte Carlo approximations (law of large numbers) to estimate the Shapley value [Štrumbelj and Kononenko, 2014]

- Draw k permutation $\pi_{i}=\left(r_{1}, \ldots, r_{p}\right)$ with $r_{m} \in\{1, \ldots, p\}$ from a uniform distribution
- For each permutation π_{i}, compute the set of features $S_{i j}$ from π_{i}, i.e. all features until feature j occurs in π_{i}
- The Monte Carlo approximation of the Shapley value is given by

$$
\phi_{j}(f, x) \approx \frac{1}{k} \sum_{i=1}^{k}\left(f\left(x^{\left(S_{j j} \cup\{j\}\right)}\right)-f\left(x^{\left(S_{i j}\right)}\right)\right)
$$

Shapley values - Kernel SHAP I

■ SHapley Additive exPlanations (SHAP)
[Lundberg and Lee, 2017]
■ Kernel SHAP reformulates the computation of Shapley values as a linear regression problem using the LIME framework

■ The interpretable model g is assumed to be a linear regression model

$$
g\left(b_{i}\right)=\phi_{0}+\sum_{j=1}^{p} \phi_{j} b_{i}^{(j)}
$$

i.e. the contributions of the linear model depend on the weights ϕ_{j} and the binary values $b_{i}^{(j)}$

Shapley values - Kernel SHAP II

■ The weights ϕ_{j} are the Shapley values

- Notice that LIME with loss function

$$
\mathcal{L}\left(f, g, \pi_{\tilde{x}}\right)=\sum_{i}\left(f\left(x_{i}\right)-g\left(b_{i}\right)\right)^{2} \pi_{\tilde{x}}\left(x_{i}\right)
$$

and $\Omega(g)=0$ corresponds to weighted ordinary least squares

$$
\begin{aligned}
\hat{\theta} & =\underset{\theta}{\arg \min }\left\|W^{1 / 2}(y-X \theta)\right\|_{2}^{2} \\
& =\left(X^{\top} W X\right)^{-1} X^{\top} W y
\end{aligned}
$$

where $X \in\{0,1\}^{2^{p} \times p}$ denotes a matrix containing all possible binary vectors b_{i} of length p as rows, $W=\left(w_{i i}\right)$ is a weight

Shapley values - Kernel SHAP III

matrix with $w_{i i}=\pi_{\tilde{x}}\left(x_{i}\right)$ and $y=\left(y_{i}\right)$ is the vector of targets $y_{i}=f\left(x_{i}\right)$

- The coefficients $\hat{\theta}$ are the Shapley values $\phi=\left(\phi_{1}, \ldots, \phi_{p}\right)$ for

$$
\pi_{\tilde{x}}\left(x_{i}\right)=\frac{p-1}{\binom{p}{k_{i}} k_{i}\left(p-k_{i}\right)}
$$

where $k_{i}=\left|b_{i}\right|$ is the number of ones in the binary representation of the ith sample

■ Notice that $\left|b_{i}\right|$ measures the similarity between x_{i} and x, therefore this particular choice of $\pi_{\tilde{x}}$ is indeed a weight based on a distance measured

Shapley values - Kernel SHAP IV

- Recall that the ith sample x_{i} is generated from x by randomly generating a binary representation b_{i} and afterwards masking all features j in \tilde{x} where $b_{i}^{(j)}=0$

■ The linear regression coefficients θ correspond to the Shapley values ϕ only when we consider all possible binary vectors b_{i}

■ In practice, Kernel SHAP uses a sampled subset of binary vectors

■ An improved method has been proposed [Kwon and Zou, 2022]

Shapley values - EXample

Partial Dependence Plot

Partial Dependence Plot

■ Let f be a black-box model such as a neural network
■ What is the effect of individual predictors $X^{(j)}$ on the response variable Y as captured by our model f ?

Partial Dependence Plot

■ Partial dependence plots (PDP) [Friedman, 2001]:

$$
\operatorname{PDP}_{j}(x)=\int f\left(x, x^{(-j)}\right) \operatorname{pr}\left(x^{(-j)}\right) \mathrm{d} x^{(-j)}
$$

where $x^{(-j)}=\left(x^{(1)}, \ldots, x^{(j-1)}, x^{(j+1)}, \ldots x^{(p)}\right)$

- In practice we use the training data $\left(x_{i}, y_{i}\right)_{i=1}^{n}$ to estimate the PDP, i.e.

$$
\widehat{\mathrm{PDP}}_{j}(x)=\frac{1}{n} \sum_{i=1}^{n} f\left(x, x_{i}^{(-j)}\right)
$$

Partial Dependence Plot - Example

- Boston housing data: Housing data for 506 census tracts of Boston from the 1970 census
- X: capita crime rate, proportion of non-retail business acres per town, nitric oxides concentration, average number of rooms per dwelling, proportion of owner-occupied units built prior to 1940, ...
- Y: median value of owner-occupied homes in USD 1000's

Partial Dependence Plot - Example

Partial Dependence Plot (PDP)

■ Housing prices drop when nitric oxides concentration reaches ~ 0.68

Partial Dependence Plot - Example

Partial Dependence Plot (PDP)

■ Housing prices drop quickly with crime rate

Partial Dependence Plot - ICE

- The individual conditional expectation (ICE) is an extension of the PDP

■ It plots each component of the PDP sum individually, i.e.

$$
\widehat{\mathrm{ICE}}_{i j}(x)=f\left(x, x_{i}^{(-j)}\right)
$$

■ Hence, we have

$$
\widehat{\operatorname{PDP}}_{j}(x)=\frac{1}{n} \sum_{i=1}^{n} \widehat{\mathrm{ICE}}_{i j}(x)
$$

INPUT OPTIMIZATION I

■ Assume that f is a classifier for images
■ We want to find inputs x not contained in the training set that correspond to predictions of a given classification

- This analysis might help to understand if f is sensitive to the correct features

■ For a given output y we solve the optimization problem

$$
\hat{x}=\underset{x}{\arg \min } \mathcal{L}(f(x), y)
$$

■ The loss function \mathcal{L} typically corresponds to the loss function used for training f

■ As for training f we may use gradient descent to compute \hat{x}
■ The result \hat{x} depends strongly on the initial value for solving the optimization problem

■ Using multiple initial conditions allows to generate multiple inputs $\left(x_{i}\right)_{i}$ corresponding to the same prediction y

Software

- SHAP:
https://shap.readthedocs.io
■ inNvestigate (Keras/Tensorflow): https://github.com/albermax/innvestigate

■ Captum (PyTorch): https://github.com/pytorch/captum

References I

圆 Ancona, M., Ceolini, E., Öztireli, C., And Gross, M. (2017).
TOWARDS BETTER UNDERSTANDING OF GRADIENT-BASED ATTRIBUTION METHODS FOR DEEP NEURAL NETWORKS.
arXiv preprint arXiv:1711.06104.
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., And Samek, W. (2015).
ON PIXEL-WISE EXPLANATIONS FOR NON-LINEAR CLASSIFIER DECISIONS BY LAYER-WISE RELEVANCE PROPAGATION.
PloS one, 10(7):e0130140.

- Breiman, l. (2001).

Statistical modeling: The two cultures (with comments and a REJOINDER BY THE AUTHOR).
Statistical science, 16(3):199-231.
Friedman, J. H. (2001).
Greedy function approximation: A Gradient boosting machine.
Annals of statistics, pages 1189-1232.

References II

围 Kım, B., Seo, J., Jeon, S., Koo, J., Choe, J., And Jeon, T. (2019). WhY ARE SALIENCY MAPS NOISY? CAUSE OF AND SOLUTION TO NOISY SALIENCY MAPS.
In 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pages 4149-4157. IEEE.
易 Kwon, Y. AND Zou, J. (2O22).
WEIGHTEDSHAP: ANALYZING AND IMPROVING SHAPLEY BASED FEATURE ATTRIBUTIONS.
arXiv preprint arXiv:2209.13429.
Lundberg, S. M. and Lee, S.-I. (2017).
A UNIFIED APPROACH TO INTERPRETING MODEL PREDICTIONS.
Advances in neural information processing systems, 30.

References III

回 Montavon, G., Binder, A., Lapuschiin, S., Samek, W., and Müller, K.-R. (2019).

LAYER-wISE RELEVANCE PROPAGATION: AN OVERVIEW. Explainable AI: interpreting, explaining and visualizing deep learning, pages 193-209.
Shapley, L. S. (1951).
Notes on the n-PERSON game-II: The value of an n-Person GAME.(1951).
U.S. Airforce PROJECT RAND - Research Memorandum.

局 Shrikumar, A., Greenside, P., and Kundaje, A. (2017). LEARNING IMPORTANT FEATURES THROUGH PROPAGATING ACTIVATION DIFFERENCES.
In International conference on machine learning, pages 3145-3153.
PMLR.

References IV

R
Shrikumar, A., Greenside, P., Shcherbina, A., and Kundaje, A. (2016).

Not Just a black box: LEARNING IMPORTANT FEATURES THROUGH PROPAGATING ACTIVATION DIFFERENCES.
arXiv preprint arXiv:1605.01713.
Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional networks: Visualising image CLASSIFICATION MODELS AND SALIENCY MAPS. arXiv preprint arXiv:1312.6034.
Šitrumbelj, E. and Kononenko, I. (2014). EXPLAINING PREDICTION MODELS AND INDIVIDUAL PREDICTIONS WITH FEATURE CONTRIBUTIONS.
Knowledge and information systems, 41(3):647-665.

References V

Sundararajan, M., Taly, A., and Yan, Q. (2017). AXIOMATIC ATTRIBUTION FOR DEEP NETWORKS. In International conference on machine learning, pages 3319-3328. PMLR.
囲 Zhao, Q. and Hastie, T. (2021).
CAUSAL INTERPRETATIONS OF BLACK-BOX MODELS. Journal of Business \& Economic Statistics, 39(1):272-281.

