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INTRODUCTION

m Machine learning studies the relationship between

» independent or predictor variables X

» dependent or response variables Y

m Machine learning and statistics may have multiple goals
[Zhao and Hastie, 2021]:

» Prediction: Predict the response variables Y as accurate at
possible from X

» Science: If X — Y is a causal relationship, we may want to
understand the laws of nature that determine this
relationship




INTRODUCTION

m Two opposing cultures of statistical analysis [Breiman, 2001]:

» Data modeling culture: Assume a parametric function f such
that Y = f(X) + ¢, where e models the aleatoric uncertainty.
The parameters of f are often easy to interpret and the model
is used to understand the laws of nature

» Algorithmic modeling culture: Use of black-box models that
are very complex and optimized to maximize predictive
accuracy. Black-box models are notoriously difficult to
interpret and do barely allow to draw any conclusions about
the laws of nature

m If we have a black-box model, how can we still gain some
interpretation?




OUTLINE |

m Assume we have a black-box machine learning model f

m Can we gain some limited understanding of the predictions
of f?

m Understanding the predictions increases our trust in f




OUTLINE Il

m Given a fixed input x, what is the contribution of each feature
to the predictiony = f(x)?
(Attribution Map / Saliency Maps)

» Occlusion

> Layer-wise relevance propagation (LRP) / DeepLIFT
» Integrated gradients

» Shapley values

> SHAP

m Given a fixed input x, is there an interpretable model that
approximates f locally?



OUTLINE I

» Local interpretable model-agnostic explanations (LIME)
» Taylor approximations

m What would f predict if we vary one or more features?
» Partial dependence plots (PDP)

» Individual conditional expectation (ICE)

m What is the most likely input x for a given prediction
y =fx)?

> Input optimization




ATTRIBUTION MAPS




ATTRIBUTION MAPS

m Attribution maps are very popular with images, where the
attribution of each pixel can be easily visualized

m Each input feature is assigned an attribution score (feature
attribution)
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OCCLUSION |

m Occlusion is a perturbation method that masks part of the
input and measures the effect on the output of the network
[Ancona et al., 2017]

m This method requires to evaluate the model for many
perturbations

m The size of the mask is of particular importance
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OcCCLUSION 11

m Assume we have a network that detects whether an image
contains a cat

m If there are multiple cats in the image, occluding parts of the
image with image patches (i.e. occluding at most one cat at a
time) will not change the output of the network

m In this case, we would require masking multiple regions at
the same time

m This leads to a combinatorial explosion




GRADIENT BASED EXPLANATIONS




LOCAL EXPLANATIONS




FEATURE ATTRIBUTION

m Given a fixed input x and the corresponding output y = f(x),
what input features contribute most to the output value y?

m Note that for many applications (e.g. images) it is not very
valuable to know which features (e.g. pixels) contribute most
to the output of a neural network unless a specific input is
considered

m The provided level of interpretability is hence limited to
individual input data points



GRADIENT |

m Let f be a neural network or any other differentiable
machine learning model

m Using the first-order Taylor expansion of f at an input X we
approximate f as a linear function

f(x) ~ F(R) + Vi F(R)(x — %)
[Simonyan et al., 2013]
m With w = V,f(X) and X' = x — X we obtain
f(x) = F(R) +w'x

where the gradient w can be easily interpreted as feature
importances



GRADIENT X INPUT |

m Using the gradient alone is problematic
m Let the network be defined as
f(x) = max{o,x — 10}
i.e. a single linear unit with ReLU activation
m The gradient is given by

1 ifx>10
o0 otherwise

Vxf(x) = {

m In this simple example, the larger x the larger the output
y = f(x) (@ssuming x > 10)




GRADIENT X INPUT II

m However, for f(20) we obtain the same attribution value as
for f(1000), i.e. 1in both cases

m Multiplying the gradient with the input x seems to improve
results [Shrikumar et al., 2016]

m For f(20) we would obtain 20 as attribution value, whereas
for f(1000) the attribution is 1000




INTEGRATED GRADIENTS |

m Integrated gradients (IG): Consider the gradient along an
entire path from a baseline x, to an input X
[Sundararajan et al., 2017]

(5) = (30) _ x9) Of (aX + (1 — a)Xo)

m |G satisfies several convincing axioms that other methods
violate



INTEGRATED GRADIENTS I

Axiom 1: Sensitivity

Assume that x, and X differ in at least one feature and that
f(Xo0) # f(X). Clearly the features that differ between x, and X
have some influence on the prediction. Hence, non-zero
attribution should be given to these features

m Gradient and Gradient x input fail this axiom

m Consider the following example with just one feature
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INTEGRATED GRADIENTS II|

m For xo = 0 and X = 2 we obtain f(xo) = 0 and f(X) =1
m However, the gradient at X = 2 is zero

m The sensitivity axiom is the complement of the dummy
property of Shapley values




INTEGRATED GRADIENTS |V

Axiom 2: Implementation invariance

Let f and f’ be two machine learning models. The two models are
functionally equivalent if f(x) = f'(x) for all x. Attributions
should be identical for functionally equivalent models

m Gradients are invariant to implementations

m Several attribution methods fail this axiom, e.g. LRP and
DeepLIFT



INTEGRATED GRADIENTS V

Axiom 3: Linearity

Let f be a machine learning model such that

f(x) = afi(x) + bf2(x)

where a and b are weights. The attribution for f is the sum of
attributions of f; and f, weighted by a and b

m Attribution methods should preserve any linearity in the
machine learning models



INTEGRATED GRADIENTS VI

Axiom 4: Completeness

Let f be a machine learning model. The attribution of all features
at a point X should sum up to

f(%) —f(xo)
where X, is a baseline

m The completeness axiom corresponds to the efficiency
property of Shapley values for f(xo) = Ef(X)



LAYER-WISE RELEVANCE
PROPAGATION (LRP)




LAYER-WISE RELEVANCE PROPAGATION (LRP) |

m Layer-wise relevance propagation (LRP) [Bach et al., 2015]
exploints the layered structure of neural networks

m Let f be a neural network with L layers

m R() € RPt denotes a vector of relevance scores, one for each
neuron in the [-th layer

m LRP satisfies the following law of conservation

Pi+a P

P
[ [
j:’l j:'l j:'l
where ij are the relevances of the input features



LAYER-WISE RELEVANCE PROPAGATION (LRP) [l

m The output of the neural network f for a given input x is the
total relevance, which is distributed among neurons in
previous layers

m More specifically, we call any relevance attribution method
LRP if it satisfies

(0] (L1H41)
Ri Z Rlek
R:i—k

(41) (L1+1)
Rk Z Rlek

ii—k

where Rﬁ;’:” is the relevance sent from neuron R to i
between layers [ and [ + 1




LAYER-WISE RELEVANCE PROPAGATION (LRP) [l

m The relevances are in both the forward and backward
direction sums of the relevances from connecting neurons

m Multiple solutions satisfy these constraints
[Montavon et al., 2019], e.g.:
» Basic rule (LRP-0)

RULLD) _ p(t+1) QWi
Y S S Y
2 GjWik

» Epsilon rule (LRP-¢)

RULD _ plt+n) __ GiWik
i~k S Zj a;Wijg

» a; denotes the activation of neuron i (i.e. the output of a
neuron before the non-linear activation is applied)




LAYER-WISE RELEVANCE PROPAGATION (LRP) vV

m DeepLIFT [Shrikumar et al., 2017] is an extension of LRP that
backpropagates relevance values of

f(X) = f(xo)

where X, is a user defined point that provides a baseline
prediction (note that LRP uses f(xo) = 0)




LOCAL INTERPRETABLE MODEL-
AGNOSTIC EXPLANATIONS (LIME)




LIME - BASIC IDEA

m Local interpretable model-agnostic explanations (LIME)

m Model-agnostic: We can evaluate the model f but do not
make any further assumptions about the model

m In particular, we do not require the model to be
differentiable

m LIME locally approximates a machine learning model f using
a simple interpretable model g at a specific point X such that

and f(x) = g(x) whenever x is close to X

m g is typically a linear regression model



LIME - BASIC IDEA

m Given a model class G, we determine a local interpretable
model g by solving

g = argmin L(f, 9, 7%) + (g)
geG

m G could be the class of linear models
m L is the main loss function we want to minimize

m Q(g) is a penalty on the complexity of g, which for instance
gives preference to models with fewer parameters

m 73(x) is a weight function that measures the proximity of x to
X, whereby a local approximation of f is enforced



LIME - BASIC IDEA

m Letx,,...,Xx, be a set of n training points

m For regression problems, the £ function can be

L(f,g,m%) = Y (F(x) — 9(x)))* mx(x;)

i
m The weight function can be given by an exponential kernel

o) - a0 { -4}

where d is a distance function

m o2 controls how local the approximation should be




LIME - IN PRACTICE |

m The data used for training f might not be appropriate for
estimating g

m We require samples (x;); close to X, where LIME uses the
following scheme:

» Draw a binary vector b; of length p at random

» Compute x; = hg(b;)

m The function hy creates a sample x; from b; by masking parts
of the reference X (occlusion)




LIME - IN PRACTICE Il

m For instance, hy could mask features by replacing them with
feature means xU), i.e. the jth feature of x; = hy(b;) is given

by




LIME - IN PRACTICE Il

m Example topic models:

> A data point x is a word count vector, where each entry x()
denotes the number of occurrences of word j in a text
document

» hg(b;) could mask features by replacing them with zeros, i.e.
%0 if W) =1
hy(b;) = e
e {o ifbY =0

» Hence, samples x; are created from the reference X by
replacing some of the counts with zeros




LIME - IN PRACTICE IV

m Example image classification:
> xis aanimage, where each entry xU) denotes a pixel or
super-pixel

» Asample x; = hg(b;) consists of the reference image X where a
some pixels or super-pixels have been masked, as defined by

the binary vector b;
)
LA ERORS
e O
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LIME - IN PRACTICE V

m The interpretable model g is typically defined on the
binarized points b;

m The loss for regression problems then becomes

L(f,g,m) =Y (F(x;) — 9(by))* mx(x;)

i




SHAPLEY VALUES




SHAPLEY VALUES - MOTIVATION

m Assume a linear model
FX) = 0x) 4 0:x3) ... 4 g, x(P)

m If features are standardized we can interpret the coefficient
0; as the global importance of the jth feature

m Given a specific input x, the contribution of feature j to the
prediction f(x) is given by

— 0, <X(1) _E {Xo‘)})
assuming features are independent




SHAPLEY VALUES - MOTIVATION |

m For non-linear models we need a more advanced definition
m Let F denote the set of p features and S C F a subset

m Furthermore, let f(x(*)) be the prediction of a machine
learning model where only a subset of features S is used

m Let S = F\{j}, then the contribution of the jth feature can be

measured as
f(X(SU{i})) — f(x%))

> f(x(UU1) is the prediction with feature j

> f(x®)) the prediction without feature j



SHAPLEY VALUES - MOTIVATION Il

m In practice, features are rarely independent, i.e. feature j
might only be informative in combination with other features

m In this case we have to attribute some of feature jth
contribution to those features

m We have to test for all subsets S C F\{j}




SHAPLEY VALUES - EXAMPLE |

m Let the feature set F consist of p = 3 elements, i.e.
F={123}

m Assume we observe the following predictions
f(x({1})) = 100, f(x({uz})) = 500,
f(x@)) =100, F(x{3D) =300, f(x{123})=1100
f(x({3})) =100, f(x({z,s})) = 300,

m Clearly, features are not contributing independently to the
predictions

m For independent features we would expect

FO2)) = F(x{)) 4+ F(x{2D)



SHAPLEY VALUES - EXAMPLE I

m How much should we attribute to each feature?

m We fix a particular feature j and evaluate its contribution to
all subsets S C F\{j}

m To simplify notation, let

() = F(xU0) — F(x)
m Forj=3andS = {1,2} we have

§(S) = 1100 — 500 = 600
m Forj=2and S = {3} we have

§(S) = 300 — 100 = 200




SHAPLEY VALUES - EXAMPLE IlI

m &(S) denotes the contribution of feature j to the prediction
based on features S

m The Shapley value for feature j is the average over all
contributions

m We evaluate all p! permutations of p features, i.e.

1,2,3
1,3,2
2,1,3
2,3,1
3,1,2
3,2,1




SHAPLEY VALUES - EXAMPLE IV

m A permutation is interpreted as a sequence of features
entering the set of features S

m For instance, for 2,1, 3 we first have feature 2 entering S and
afterwards feature 1. Feature 3 is the last to join S

m We then evaluate the contribution of each feature, i.e. for
2,1,3 we evaluate &({}), &({2}), and &({1,2})




SHAPLEY VALUES - EXAMPLE V

j=1 j=2 j=3
123 | &({}) =100 | &({1}) =400 | &({1,2}) =600
132 | &({}) =100 | &({1,3}) =800 | &({1}) =200
21,3 | &({2}) =400 | &({}) =100 | &({1,2}) =600
231 | &({2,3}) =800 | &L({}) =100 | &({2}) =200
312 | &({3})) =200 | &({1,3}) =800 | &({}) =100
327 | &({2,3}) =800 | &({3}) =200 | &({}) =100

m The rows are the permutations, the columns represent
features to enter the set S

m The Shapley value ¢;(f, x) for feature j is the average over all
p! = |F|! rows in column j

m Hence, permutations are assumed to be uniformly
distributed



SHAPLEY VALUES - EXAMPLE VI

m How often do we observe a particular entry §(S) in column j?

m We can permute all features before j enters and all features
after j enters

m Hence, an entry &;(S) occurs

[SI'CIF] = IS =)

times in column j




SHAPLEY VALUES - DEFINITION |

Shapley value [Shapley, 1951]

The shapley value for the jth feature is defined as

GFx) = 3 |S|!(|F| |;_|!5| — 1)!51(5)
SCR\{j}
S |S|'(IF] |;|'5| — i (f(x(su{j})) _]c(X(S))>
SCR\{j} '

m The sum is over 2P~" permutations

m For large feature sets the Shapley value is computationally
very expensive or even impossible to compute




SHAPLEY VALUES - LINEAR MODELS |

m Assume f is a linear model of the from
F) = x4 0,x3) ... 1 gpx(P)

m Given independent features, the Shapley values for this
model reduce to

oi(f.x) = 06; (Xo’) _E [X(i)D
[Strumbelj and Kononenko, 2014]

m This is what we expected from our previous discussion




SHAPLEY VALUES - PROPERTIES |

m Efficiency:
S 4i(f. %) = F(x) — Exf(X)
j

m Symmetry: If two features j and k contribute equally to all
subsets, then

¢](fax) = ¢k(fax)
for all x

m Dummy: If feature j does not influence the prediction f(x(*)
for all S, then

(b](f?X) =0



SHAPLEY VALUES - PROPERTIES Il

m Additivity: If f(x) = >, fm(x) then

S(F.X) = 6j(fm,x)

i.e. f could be a random forest or any other bagging method




SHAPLEY VALUES - IN PRACTICE |

m How do we remove features from the prediction of our
machine learning model f?

m The optimal but impractical way would be to train a model fs
for each subset S

m Instead, we often use
F) = E [f(x) | X = x©

where all elements of X that are not given by {X(5) = x(5)}
are considered random

m The expectation can be estimated from our training data,
which however requires many evaluations of the model f




SHAPLEY VALUES - IN PRACTICE Il

m Assuming that our model f is linear, we obtain
FO) = E[f(x) | X = x| = £ (E[x | x) = x])

m Furthermore, assuming independent features we obtain
FX®) = F(x)

where

=(S) _ X(j) |f] €S
| EXO) ifj¢s

i.e. all features not in S have been replaced by their
expectation




SHAPLEY VALUES - MONTE CARLO |

m Summing over 2P~ contributions is often too expensive

m We may utilize Monte Carlo approximations (law of large
numbers) to estimate the Shapley value
[Strumbelj and Kononenko, 201z]

» Draw R permutation 7; = (r4,...,rp) with rp, € {1,...,p} from
a uniform distribution

» For each permutation 7;, compute the set of features S; from
m;, i.e. all features until feature j occurs in m;

» The Monte Carlo approximation of the Shapley value is given
by

k
G(F.0) ~ > (f(X(SUU{i})) _ f(x(s,-,->)>

= |




SHAPLEY VALUES - KERNEL SHAP |

m SHapley Additive exPlanations (SHAP)
[Lundberg and Lee, 2017]

m Kernel SHAP reformulates the computation of Shapley values
as a linear regression problem using the LIME framework

m The interpretable model g is assumed to be a linear
regression model

p .
g(bj) = ¢o + > _ &b
j=1

i.e. the contributions of the linear model depend on the
weights ¢; and the binary values b;’)



SHAPLEY VALUES - KERNEL SHAP Il

m The weights ¢; are the Shapley values

m Notice that LIME with loss function

L(f.g.mz) =Y (F(x;) — g(b)))* mx(xi)

i

and Q(g) = o corresponds to weighted ordinary least
squares

W'2(y — X0)

2
2

6= arg min
0
= (XTwx)"'XTwy

where X € {0,1}*"*P denotes a matrix containing all possible
binary vectors b; of length p as rows, W = (w;;) is a weight



SHAPLEY VALUES - KERNEL SHAP Il

matrix with w;; = mz(x;) and y = (y;) is the vector of targets

yi=Ff(x)
m The coefficients 4 are the Shapley values ¢ = (¢1,...,¢p) for

_ p—1
) = BV (p — k)

where k; = |b;| is the number of ones in the binary
representation of the ith sample

m Notice that |b;| measures the similarity between x; and x,
therefore this particular choice of 7y is indeed a weight
based on a distance measured




SHAPLEY VALUES - KERNEL SHAP IV

m Recall that the ith sample x; is generated from x by randomly
generating a binary representation b; and afterwards

masking all features j in X where bfj) =0

m The linear regression coefficients 6 correspond to the
Shapley values ¢ only when we consider all possible binary
vectors b;

m In practice, Kernel SHAP uses a sampled subset of binary
vectors

m An improved method has been proposed
[Kwon and Zou, 2022]




SHAPLEY VALUES - EXAMPLE

21.02 = LSTAT
557 =RM

21 = PTRATIO
98.1 = AGE
1.252 = CRIM
8.14 = INDUS
376.57 =B
0.538 = NOX
307 = TAX

fix) =13.933
\
-0.74 <}
-0.59 4
-021
-0.12 4
) +0.09
-0.08 {
) +0.06
-0.03 {
-0.01 |
-0 ‘
14 16 18 20 2

22
E[fIX)] =22.28




PARTIAL DEPENDENCE PLOT




PARTIAL DEPENDENCE PLOT

m Let f be a black-box model such as a neural network

m What is the effect of individual predictors XU) on the
response variable Y as captured by our model f?




PARTIAL DEPENDENCE PLOT

m Partial dependence plots (PDP) [Friedman, 2001]:
PDP;(x / £ (6, XD pr(x)dx ()
where x(=) = (x(_ ... xU=1) xU+1) ()

m In practice we use the training data (x;,y;)?_, to estimate the
PDP, i.e.

PDP;(x fox( gl




PARTIAL DEPENDENCE PLOT - EXAMPLE

m Boston housing data: Housing data for 506 census tracts of
Boston from the 1970 census

m X: capita crime rate, proportion of non-retail business acres
per town, nitric oxides concentration, average number of
rooms per dwelling, proportion of owner-occupied units
built prior to 1940, ...

m Y: median value of owner-occupied homes in USD 1000's




PARTIAL DEPENDENCE PLOT - EXAMPLE

Partial Dependence Plot (PDP)

23.0 235
Il Il

Median Housing Price
225
Il

Nitric Oxides Concentration

m Housing prices drop when nitric oxides concentration
reaches ~ 0.68




PARTIAL DEPENDENCE PLOT - EXAMPLE

Partial Dependence Plot (PDP)
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m Housing prices drop quickly with crime rate



PARTIAL DEPENDENCE PLOT - ICE

m The individual conditional expectation (ICE) is an extension
of the PDP

m It plots each component of the PDP sum individually, i.e.
ICE;:(x = f(x x
i) =fx.x )

m Hence, we have

PDP;(x E:ICEU




INPUT OPTIMIZATION




INPUT OPTIMIZATION |

m Assume that f is a classifier for images

m We want to find inputs x not contained in the training set
that correspond to predictions of a given classification

m This analysis might help to understand if f is sensitive to the
correct features

m For a given output y we solve the optimization problem

X = argxmin ﬁ(f(X),)/)

m The loss function £ typically corresponds to the loss
function used for training f



INPUT OPTIMIZATION Il

m As for training f we may use gradient descent to compute X

m The result X depends strongly on the initial value for solving
the optimization problem

m Using multiple initial conditions allows to generate multiple
inputs (x;); corresponding to the same prediction y




SOFTWARE

m SHAP:
https://shap.readthedocs.io

m iNNvestigate (Keras/Tensorflow):
https://github.com/albermax/innvestigate

m Captum (PyTorch):
https://github.com/pytorch/captum


https://shap.readthedocs.io
https://github.com/albermax/innvestigate
https://github.com/pytorch/captum
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