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Decision Theory: Outline

Decision theory: choice under uncertainty

Hypothesis testing and parameter estimation are special
cases of decision theory [Wald, 1939]:

Three components of decision theory

▶ Assignment of probabilities to events

Bayes theorem

Maximum entropy approach

▶ A loss function that describes the cost of a decision

▶ A rule for selecting the best decision
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Decision Theory: Historical Context / Literature

Probability theory is not just a set of rules for computing
frequencies

Probability theory is the calculus of inductive reasoning as
proposed by Laplace [Good, 1950, Savage, 1972]

It is seen as an extension of logic calculus [Jaynes, 2003]

Allows the assignment of (subjective) probabilities to
propositions or events (i.e. the states of nature) to quantify
their plausibility

For instance, the plausibility of proposition A given some
other proposition B is true (A |B)
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The Running Example



Running Example

Widget factory [Jaynes, 1963]
Mr. A is in charge of a Widget factory. Every morning he must
decide whether to paint the daily run of 200 widgets red, yellow,
or green. He does not know how many orders for each type will
come in during the day. However, the promise of the factory is
that it can make delivery on any size order within 24 hours. This
is of course not realistic, but Mr. A’s job is to fulfill this promise
as best as he can.
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Running Example

A priori knowledge:

Mr. A arrives at work an notices that there are 100 red, 150
yellow, and 50 green widgets in stock

In addition, Mr. A learns that the expected daily orders of
widgets are 50 for red, 100 for yellow and 10 for green

4 23



Running Example

A priori knowledge:

Mr. A arrives at work an notices that there are 100 red, 150
yellow, and 50 green widgets in stock

In addition, Mr. A learns that the expected daily orders of
widgets are 50 for red, 100 for yellow and 10 for green

4 23



Running Example

Every morning Mr. A has to choose among three possible
decisions:

D1 = "make red widgets today"

D2 = "make yellow widgets today"

D3 = "make green widgets today"

We discuss two decision problems:

1. Which decision is optimal?

2. How to estimate the expected daily orders?

5 23



Running Example

Every morning Mr. A has to choose among three possible
decisions:

D1 = "make red widgets today"

D2 = "make yellow widgets today"

D3 = "make green widgets today"

We discuss two decision problems:

1. Which decision is optimal?

2. How to estimate the expected daily orders?

5 23



Problem 1:
Optimal Decision



Probability Distribution: Random Variables

We define three random variables X1, X2, and X3 for the total daily
ordered number of red, yellow, and green widgets, respectively.

A probability distribution over X1, X2 and X3

Our prior knowledge is

E X1 = 100,E X2 = 150, andE X3 = 50

How do we get from our prior knowledge to a probability
distribution?
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Probability Distribution: Entropy

Entropy measures the uncertainty about the outcomes of a
random variable X.

Entropy [Shannon, 1948]
Let X be a discrete random variable, then the entropy H of X is
given by

H(X) = −
∑
x

pr(X = x) log pr(X = x) .

If X is a continuous random variable with density fX, then

H(X) = −
∫
x
fX(x) log fX(x)dx .

For densities H(X) can be negative!

7 23



Probability Distribution: Entropy

Entropy measures the uncertainty about the outcomes of a
random variable X.

Entropy [Shannon, 1948]
Let X be a discrete random variable, then the entropy H of X is
given by

H(X) = −
∑
x

pr(X = x) log pr(X = x) .

If X is a continuous random variable with density fX, then

H(X) = −
∫
x
fX(x) log fX(x)dx .

For densities H(X) can be negative!

7 23



Probability Distribution: Entropy

Entropy measures the uncertainty about the outcomes of a
random variable X.

Entropy [Shannon, 1948]
Let X be a discrete random variable, then the entropy H of X is
given by

H(X) = −
∑
x

pr(X = x) log pr(X = x) .

If X is a continuous random variable with density fX, then

H(X) = −
∫
x
fX(x) log fX(x)dx .

For densities H(X) can be negative!

7 23



Probability Distribution:
Entropy of Bernoulli Trials

Consider a single coin flip, which we also call a Bernoulli trial. In
this case, X is discrete and can take two values, either head (x1)
or tail (x2). Furthermore, we define pr(X = x1) = p so that
pr(X = x2) = 1 − p.

The entropy H(X) given by

H(X) = −p log p− (1 − p) log(1 − p) .

Examples:
The entropy is maximal (i.e. H(X) ≈ 0.693) if p = 0.5, becasue
we are most uncertain about the outcome of the coin flip.

The entropy is minimal (i.e. H(X) = 0) if p = 0 or p = 1,
because we can be sure about the outcome of the coin flip.

8 23
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Probability Distribution: Maximum Entropy

The maximum entroy approach is a method to select a
probability distribution such that it reflects our prior knowledge,
without assuming anything beyond that.

Maximum Entropy Approach
Let T(X) = (T1(X), . . . , Tm(X)) ∈ Rm denote a statistic of X. Assume
that θ = E T(X) is given. The maximum entropy approach
determines the distribution of X as the maximizer of the
following optimization program:

maximize H(X)
subject to E T(X) = θ

We regard the constraints T(X) = θ as our prior knowledge.

In modern terms we also call T(X) the features of our observed
data.
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Probability Distribution: MaxEnt Distributions

Maximum entropy distribution over a discrete set {0, 1, . . .n}
with no constraints:

pr(x) = 1
n+ 1 (uniform)

Maximum entropy distribution on R+ with known mean µ:

pr(x) = 1
µ
exp

{
−X
µ

}
(exponential)

Maximum entropy distribution on R with known mean µ and
variance σ2:

pr(x) = 1√
2πσ2

exp

{
−(x − µ)2

2σ2

}
(normal)

In general, maximum entropy distributions are members of
the exponential family

10 23
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Probability Distribution: Running Example

We know the expected daily orders θj for all colors j.

maximize H(Xj)
subject to E Xj = θj

The solution to this optimization problem is given by

pr(Xj = k) = 1
1 + θj

(
θj

θj + 1

)k
(geometric distribution)

(see backup slides!). More specifically, we have

pr(X1 = k) = 1
101
( 100

101
)k

(red)

pr(X2 = k) = 1
151

(
150
151

)k
(yellow)

pr(X3 = k) = 1
51

(
50
51

)k
(green)
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Loss Function: Motivation

Our goal is to make a decision under uncertain future states of
nature

A probability distribution allows to assign probabilities to events
or states of nature.

For instance, Mr. A may evaluate the (subjective) probability of
receiving x1 daily orders for red, x2 for yellow, and x3 for green
widgets.

A probability distribution alone does not allow Mr. A to decide
what widgets to produce.

12 23
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Loss Function

A loss function L quantifies the loss when making decision D and
x turns out to be the true state of nature.

For instance, for Mr. A the loss might be equal to the number of
widgets he cannot deliver. Remember that he has stock of
S1 = 100 red, S2 = 150, and S3 = 50 widgets.

If he decides to produce red widgets today (D1) and x1, x2, x3
represent the daily order of red, yellow, and green widgets, then
the loss function is

L(D1; x1, x2, x3) = (x1 − S1 − 200)+ + (x2 − S2)
+ + (x3 − S3)

+

where (x)+ = max(0, x).

13 23
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Decision Rule: Combinding Probability and Loss

Component 1: Probability distribution
pr(X1 = x1, X2 = x2, X3 = x3) = p1(x1)p2(x2)p(x3)

Component 2: Loss function
L(Dj; x1, x2, x3)

Component 1 and 2: Weighted loss
L(Dj; x1, x2, x3)p1(x1)p2(x2)p(x3)

We do not know x1, x2, and x3! Expected loss

L(Dj) =
∑
x1,x2,x3

L(Dj; x1, x2, x3)p1(x1)p2(x2)p(x3)

Decision rule: Minimum expected loss D̂ = minDj L(Dj)
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Decision Rule: Combinding Probability and Loss

Mr. A computed the following expected losses:

L(D1) = 22.4 (widgets) for producing red widgets

L(D2) = 9.7 (widgets) for producing yellow widgets

L(D3) = 28.9 (widgets) for producing greed widgets

To minimize the expected loss, Mr. A decides to produce yellow
widgets today!
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Problem 2:
Estimation of Daily Orders



Probability Distribution: Bayes Theorem

Assume we know the daily orders

x1j, x2j, . . . , xnj

for the past n days for color j.

We introduce a random variable for Xij for the total orders at day
i for widgets of color j.

For simplicity we write {X̄j = x̄j} = {Xij = xij}j

16 23
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Probability Distribution: Bayes Theorem

Let θj denote the expected daily number of orders for color j,
then by assuming independence and from our derivation of
Problem 1 the likelihood is given by

pr(X̄j = x̄j |Θj = θj) =
n∏
i=1

1
1 + θj

(
θj

θj + 1

)xij
=

n∏
i=1

φj(1 − φj)
xij

where φj =
1

1+θj
.

However, in order to decide for a particular θ, we need

pr(Θ = θ | X̄j = x̄j) = ?

17 23
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Probability Distribution: Bayes Theorem

Bayes Theorem (inverse probability)
[Bayes and Price, 1763, Laplace, 1774]
Let X and Θ denote two random variables, where X typically
represents the observed data and Θ the parameter or hypothesis
of interest. Bayes theorem is given by

pr(Θ = θ | X = x) = pr(X = x,Θ = θ)

pr(X = x) =
pr(X = x |Θ = θ)pr(Θ = θ)

pr(X = x)

where
pr(Θ = θ | X = x) is called the posterior distribution,
pr(X = x |Θ = θ) the likelihood,
pr(Θ = θ) the prior distribution, and
pr(X = x) the marginal likelihood or evidence.
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Probability Distribution: Bayes Theorem

As prior we select the maximum entropy distribution (Beta
distribution)

pr(Φ = φ) =
1

Beta(α , β )
φα −1(1 − φ)β −1

for pseudocounts α and β.

⇒ pr(Φ = φ | X̄j = x̄j) =
1

Beta(α′, β′)
φα′−1(1 − φ)β

′−1

where α′ = α+ n, and β′ = β +
∑

i xij.

The prior is called conjugate when the posterior is of the same
form
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Probability Distribution: Remarks

For complex applications, there often is no conjugate prior

In such cases, the posterior might not have an analytical
solution

There exist several methods to approximate the posterior
distribution

▶ Laplace approximation

▶ Variational Bayes

▶ Metropolis Hastings (MC) and Markov chain Metropolis
Hastings (MCMC) methods

▶ . . .
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Loss Function: Running Example

A common loss function for parameter estimation is the squared
error loss

L(θ̂, θ) = (θ̂ − θ)2

where θ̂ denotes our estimate and θ the true parameter.

A computationally attractive choice is the 0-1-loss

L01(θ̂, θ) =

{
0 if θ̂ ̸= θ

1 if θ̂ = θ

which leads to the maximum a posteriori estimate when using
the minimum expected loss as decision rule
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Decision Rule: Minimum Expected Loss

Solving the minimum expected loss for different loss functions:

Squared error loss

θ̂ = argmin
θ̂

∫
(θ̂ − θ)2pr(Θ = θ | X = x)dθ

=

∫
θ pr(Θ = θ | X = x)dθ

= E [Θ | X = x]

0-1-loss

θ̂ = argmin
θ̂

∫
L01(θ̂, θ)pr(Θ = θ | X = x)dθ

= argmax
θ

pr(Θ = θ | X = x) (MAP)
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Decision Rule: Minimax Principle

The minimax decision rule is used to minimize the possible
loss for worst case scenarios

In game theory, the minimax decision rule is used because
we know the opponent will try to maximize our loss

If Mr. A applied the minimax principle, he would choose the
following decision

D̂ = argmin
Dj

max
x1,x2,x3

L(Dj; x1, x2, x3)

For Mr. A, the minimax principle is unrealistic, because
nature is not actively playing against him
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Derivation of MaxEnt Distribu-
tion



Maximum Entropy Distribution

The distribution of X is determined by the following optimization
program

maximize H(X)
subject to E X = θ

The Lagrangian is

L(p, λ0, λ1) = −
∞∑
k=1

pk log pk − λ0

( ∞∑
k=0

pk − 1
)

− λ1

( ∞∑
k=0

kpk − θ

)

By differentiating with respect to pk we obtain

pk = exp {−λ0 − λ1k− 1}
≡ exp {−λ0 − λ1k}



Maximum Entropy Distribution

The Lagrangian multipliers are determined by the constraints.
For λ0 we have

∞∑
k=1

pk = 1 ⇒
∞∑
k=1

exp {−λ0 − λ1k} = 1

From which it follows that

λ0 = − log (1 − exp (−λ1))

Furthermore, for λ1 we have
∞∑
k=1

kpk = θ ⇒
∞∑
k=1

k exp {−λ0 − λ1k} = θ

so that
(1 − e−λ1)

eλ1

(eλ1 − 1)2 =
1

eλ1 − 1
= θ



Maximum Entropy Distribution

It follows that
λ1 = log

(
1
θ
+ 1
)

As a result, we have

pk = exp {−λ0 − λ1k}

=
1

(1 + θ)(1 + 1
θ )
k

=
1

1 + θ

(
θ

θ + 1

)k



MaxEnt Distribution with Addi-
tional Prior Knowledge



Maximum Entropy Distribution

Additional prior knowledge:

Mr. A learns that the avarage individual order is 75 for red, 10
for yellow, and 20 for green widgets



Maximum Entropy Distribution

We know the expected number of daily orders θj and the
expected number of individual orders ϕj for all colors j.

In addition to Xj we define a new random variable Yj, i.e.

Xj = n : daily order of size n for color j
Yj = m : m individual orders for color j per day

so that E Xj = θj and E Yj = ϕj.

Furthermore, we link Xj and Yj through a third random variable
Zij, which denotes the number of individual orders of size j for
color j.

Xj =
∞∑
j=1

jZij , Yj =
∞∑
j=1

Zij
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Maximum Entropy Distribution

The maximum entropy problem is given by

maximize H(Zi1, Zi2, . . . )
subject to E Xj = θj

E Yj = ϕj

What is the solution to this optimization problem?

Analytically already hard to solve.
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